SOCIETY OF TOXICOLOGY

CONTEMPORARY CONCEPTS IN TOXICOLOGY SECTION

U. S. DEPARTMENT OF HEALTH & HUMAN SERVICES
FOOD & DRUG ADMINISTRATION
OFFICE OF WOMEN'S HEALTH

CENTER FOR BIOLOGICS RESEARCH & REVIEW

WORKSHOP ON:

NON-CLINICAL SAFETY EVALUATION

OF PREVENTIVE VACCINES:

RECENT ADVANCES AND REGULATORY CONSIDERATIONS

VOLUME I

Monday, December 2, 2002
Arlington, Virginia

[TRANSCRIPT PREPARED FROM A TAPE RECORDING.]

$\underline{\text{C}} \ \underline{\text{O}} \ \underline{\text{N}} \ \underline{\text{T}} \ \underline{\text{E}} \ \underline{\text{N}} \ \underline{\text{T}} \ \underline{\text{S}}$

	PAGE
MORNING SESSION:	
WELCOME KAREN MIDTHUN, M.D. Director, Office of Vaccines Research & Review, CBER/FDA	7
NON-CLINICAL SAFETY ASSESSMENT OF PREVENTIVE VACCINES PRESENTATIONS: [Note: All presentations were accompanied by slides]	
FDA PERSPECTIVE: ELIZABETH M. SUTKOWSKI, Ph.D. Office of Vaccines Research & Review, FDA	19
<pre>INDUSTRY PERSPECTIVE: FRANCOIS VERDIER, Pharm.D., Ph.D., Product Safety Assessment, Aventis Pasteur</pre>	39
ROUNDTABLE DISCUSSION: SCIENTIFIC AND TECHNICAL CHALLENGES IN PRECLINICAL SAFETY TESTING OF VACCINES SALLY HARGUS, Ph.D., CBER, FDA, Moderator	72
TOPIC ONE: "The Relevance of Animal Studies for Non-Clinical Safety Evaluation of Vaccines" BRIAN LEDWITH, Ph.D., Director, Biologic Safety Assessment, Merck	73
TOPIC TWO: "Applicability of Traditional Drug Toxicity Study Designs for Safety Evaluation of Vaccines"	

$\underline{C} \ \underline{O} \ \underline{N} \ \underline{T} \ \underline{E} \ \underline{N} \ \underline{T} \ \underline{S} \ [Cont'd.]$

	PAGE
AFTERNOON SESSION:	
ROUNDTABLE DISCUSSION [Cont'd.]:	
TOPIC THREE: "Animal Models Appropriate for Assessing Immunotoxicology and Immunopathology" MICHAEL LUSTER, Ph.D., Chief, Toxicology & Molecular Biology Branch, CDC, NIOSH	154
TOPIC FOUR: "Safety Evaluation of Adjuvants: Should They Be Considered Separately, or Only in the Context of the Final Vaccine?" NATALIE GARCON, Pharm.D., Ph.D.,	
GlaxoSmithKline	204
ROUNDTABLE DISCUSSION: AUTOIMMUNITY-HYPERSENSITIVITY AND VACCINE SAFETY ASSESSMENT	
TOPIC ONE: "Status of Non-Clinical Methods for Autoimmunity" PAUL-HENRI LAMBERT, M.D., Chief, Vaccine Research & Development, WHO	237
TOPIC TWO: "Status of Non-Clinical Methods for Hypersensitivity" FRANCOIS VERDIER, Pharm.D., Ph.D., Aventis Pasteur	262
QUESTION & ANSWER SESSION	267

PROCEEDINGS

DR. MIDTHUN: Would everyone please take their seats?

Good morning, and welcome. It gives me great pleasure to welcome all of you to this Workshop on Non-Clinical Safety Evaluation of Preventive Vaccines.

I'd like to start by thanking our co-sponsors--in particular, the Society of Toxicology and the Contemporary Concepts in Toxicology Section--for their help in organizing and contributing to this workshop. And a special thanks to Shawn Lamb, the executive director of the SOT, and her staff, for their extremely wonderful help in putting all of this together.

We'd also like to thank, and very much appreciate the support extended by the FDA Office of Women's Health, and for their significant contribution to the funding for this workshop.

And I'd also like to give a special thanks to the staff of CBER in pulling all of this together.

I'd also like to acknowledge the organizing committee members. A special thanks to Marion Gruber and

Liz Sutkowski, from the Office of Vaccines, for working extremely hard to develop and coordinate the workshop.

Marion has been working for several years to develop the Office of Vaccines' policy on preclinical toxicity testing; and in particular, to develop reproductive toxicology testing. And Elizabeth Sutkowski is the chair of the preclinical toxicity testing working group within CBER, and is drafting a guidance for industry on preclinical toxicity testing of preventive vaccines.

We'd also like to thank Mercedes Serabian, from the Office of Therapeutics, and Sally Hargus, from the Office of Vaccines, for their help in organizing this workshop, and for acting as moderators for the roundtable discussions.

We also thank Christine Everett for her help in ushering through the co-sponsorship agreement and the approval of the funding from the Office of Women's Health.

We gratefully acknowledge Francois Verdier, for his help in organizing the workshop; and in particular for his recommending that this first day of the workshop be

dedicated to discuss preclinical safety of testing of vaccines in general.

We also gratefully acknowledge Dr. Kenneth Hastings of the Center for Drugs, for his help in coordinating the workshop; and in particular, for his recommendations for speakers for the workshop.

And we also thank Robert House, of DynPort

Vaccine Company, for his help in organizing the workshop;

and in particular, for securing the approval of the co
sponsorship for the CCT section of the SOT.

This morning I'd like to discuss the key components of the safety evaluation of biologics; which, of course, include preventive vaccines. I'm going to briefly review approaches to toxicity assessments of preventive vaccines, past and present. I'll touch on current challenges and issues related to non-clinical safety assessment of vaccines. And I'll describe some initiatives addressing non-clinical safety assessments of vaccines, and how the regulatory process is evolving in this area.

Clearly, assuring the safety of biologics is at the forefront of CBER's mission. What are some key

components of the safety assessment? The safety assessment of preventive vaccines is a continuous process that begins with the development of a vaccine candidate at the pre-IND stage. It continues through the various stages of clinical development during the IND phase. And it continues onward after licensure, as well, with post-marketing surveillance, and also with inspections that are ongoing at manufacturing sites.

It includes the characterization of the product by physical, chemical, and biological testing. It includes an adequate control of the manufacturing process, and the development and establishment of adequate lot release tests to assure the safety, purity, and potency of the products. It also includes toxicity assessments in animals, clinical safety assessments and, again, surveillance after licensure, as well.

Over the next couple of days, we'll be discussing the non-clinical safety assessment of a product focusing on animal safety testing prior to introducing the product into the clinic and any further safety evaluation of animals

that may be needed to be performed during and in parallel with clinical development of the product.

How is "safety" defined? Well, in the Code of Federal Regulations it states that "safety" is "relative freedom from harmful effect to persons affected directly or indirectly by a product when prudently administered, taking into consideration the character of the product in relation to the condition of the recipient at the time."

Thus, given the diversity of preventive vaccine products, the safety evaluation needs to consider the character of the product, the methods of manufacture, and the indications. It's critical that early in product development agreement is reached between the Center for Biologics and a vaccine developer, to assure that methods and standards for the preclinical and clinical safety evaluation of a product are adequate.

Historically, the non-clinical safety assessment for preventive vaccines has often not included toxicity studies in animal models. This is because vaccines have not been viewed as inherently toxic, and vaccines are

generally administered in limited dosages over months or even years.

However, progress in the field of biotechnology has accelerated the development of a broad range of novel vaccines, and the composition of vaccine products has evolved from attenuated or inactivated whole-cell organisms, to protein polysaccharide conjugates, peptides, recombinant proteins, DNA vaccines, etcetera.

More recently, there has been a generation of a wide range of complex vaccine products and vaccine technologies that are often combined with novel adjuvants, administered in new delivery systems, and administered by new routes of administration. These advances have resulted in an increased focus on non-clinical safety assessment of these products and whether there is a need for initial phase-one clinical studies to be supported by preclinical toxicity data in animals.

In contrast to most drugs and biological products that are predominantly developed to treat ill patients, vaccines primarily are given to large numbers of healthy people, oftentimes predominantly healthy infants and

children. And this places significant emphasis on their safety.

Also, for several vaccines the incidence of the infectious diseases that they are intended to prevent is quite low. Therefore, a high percentage of vaccinated people will never be exposed to the infectious agent. Thus, the benefit of the vaccine in preventing the infectious disease may be difficult to appreciate at the individual level. Thus, there is low tolerance for significant adverse events associated with vaccines—that is, caused by vaccines.

Given these findings, and the context of novel vaccine development, there is an increased focus on the safety assessment in animal models. If the preclinical safety assessment is deemed to be insufficient, this can lead to a clinical hold for an IND.

The Code of Federal Regulations states that an IND should include data from pharmacologic and toxicologic studies that allow the sponsor to conclude that it is reasonably safe to conduct a proposed clinical investigation.

The main challenge in establishing a predictive non-clinical safety assessment comes from the fact that vaccines act through complex multi-stage mechanisms. Thus, the detection of toxicity for vaccines is likely to be more complex than for conventional chemically-derived drug products, because safety concerns may result from the immune response to the vaccine. Thus, toxicity testing programs recommended for conventional drug products may not always be applicable to vaccine products.

The non-clinical safety assessment of vaccines represents a new and evolving field. And clearly, consensus is needed among industry, academia, and regulatory authorities regarding the most appropriate and scientifically sound approaches to this area.

And there are a number of questions to address:

For which products should toxicity testing be performed?

What are the criteria for selecting the appropriate route of administration, doses, and schedule? How should the toxicity of adjuvants be evaluated? What animal models should be used? And how should one incorporate alternative methods into non-clinical safety assessments?

Depending on the target population and vaccine indication, it may be necessary to conduct special non-clinical safety assessments. In particular, if a target population for the product includes pregnant women or females of reproductive age, reproductive toxicity studies should be considered. We have dedicated the second day of this workshop to address this important subject.

FDA announced in the Federal Register in

September 2000 the availability of a draft document
entitled "Guidance for Industry, Considerations for
Reproductive Toxicity Studies for Preventive Vaccines for
Infectious Disease Indications," providing information to
sponsors regarding assessments of the reproductive toxicity
potential for preventive vaccines indicated for maternal
immunization and females of reproductive age.

Industry has provided comments on this document and, because of the complexity of the issues and the concerns raised, we decided to discuss these in a public forum among experts in the field. Thus, tomorrow we will address technical aspects, experimental design, and animal models for developmental toxicity studies, in order to

reach a consensus on how to best perform developmental toxicity studies for preventive vaccines, and the type of information that can be derived from such studies, to assure that it will be relevant and useful for assessment of human risk.

A number of working groups have been established at CBER, not only to address the non-clinical safety assessment, but a number of other aspects of safety. And I'll just mention these briefly, although they're not the focus today. For example, looking at the safety aspects of DNA vaccines, the cell substrates used to manufacture vaccines, and also keeping abreast of the best ways to test for adventitious agents.

There is a CBER reviewer document, as CBER has been engaged in the process of developing guidance for the preclinical toxicity testing of preventive vaccines. The internal reviewer document is entitled "Preclinical Toxicity Studies for Vaccines To Support Initiation of Clinical Studies." And that's an internal reviewer document. And Dr. Sutkowski will discuss this with you in her presentation.

This document will eventually form the basis for a guidance for industry document for non-clinical safety evaluation of vaccines. The goal is to publish a document that is specifically tailored to preclinical and non-clinical safety assessment of preventive vaccines. And that, besides a discussion of general toxicity assessments, includes special considerations for individual product categories, adjuvantive vaccines and other routes of administration.

Issues pertaining to the guidance document on reproductive toxicity studies will be presented by Dr. Gruber, and will be discussed tomorrow.

How is the regulatory process evolving? Well, toxicity assessments will be a part of the product characterization for certain vaccines. CBER will continue to use a scientifically based, case-by-case approach to toxicity assessment.

In summary, non-clinical toxicity assessment is a key component in the development of preventive vaccines.

The challenge in predictive safety assessments for preventive vaccines is due to the fact that vaccines are

not conventional drugs. We need to discuss and reach consensus on scientific and technical approaches for toxicity assessments that are specific for vaccines.

These approaches should be optimized to lead to the generation of interpretable data, the wise use of animal resources; and should facilitate the development of safe products, not delay product development.

It gives me great pleasure to introduce our next speaker. And that's Dr. Liz Sutkowski. She will be presenting the FDA perspective of the non-clinical safety assessment of preventive vaccines.

Dr. Sutkowski is a scientific reviewer in DVRPA-in the Division of Vaccines and Related Products

Applications, in the Office of Vaccines--and has chaired
the working group on the preclinical safety testing of
preventive vaccines. She has a wealth of experience that
she brings with her: a background in biochemistry; postdoctoral work in the departments of pharmacology at
Georgetown University and the University of Washington.
She also had many years of experience in the division of

cytokine biology in the Center for Biologics, before coming to the Office of Vaccines.

So it gives me great pleasure to introduce Dr. Liz Sutkowski.

[Applause.]

FDA PERSPECTIVE:

BY ELIZABETH M. SUTKOWSKI, PH.D.,

OFFICE OF VACCINES RESEARCH & REVIEW, FDA

DR. SUTKOWSKI: Thank you, Dr. Midthun, for giving an overview of the initiatives that are ongoing in our office on the non-clinical safety evaluation programs that we have and our addressing on this evolving field.

I'll be giving the FDA perspective today on non-clinical safety assessments of preventive vaccines regulated by CBER.

As Dr. Midthun mentioned, the Office of Vaccines is giving consideration to whether or not, prior to proceeding into phase I clinical trials, there is going to be extra consideration given to whether or not non-clinical safety assessments will need to be supported by toxicity testing in animals.

And so the purpose we have gathered here today is to discuss this evolving field, and to facilitate discussion between regulators and researchers in the fields of immunology and toxicology, and to address specific questions that we have in our minds for generating the guidance that Dr. Midthun mentioned.

The objective of my talk today in introducing this workshop is to just go over the challenges that we are facing in toxicity assessments for preventive vaccines, and to go over how the regulatory process is evolving within CBER, and then to go over the current approach that we are taking to toxicity assessments for preventive vaccines; with the idea that the approach we have is evolving, and is not written in stone, and we are here to seek input from all of you.

Today I just want to focus on preventive vaccines, and say that our office regulates preventive vaccines and therapeutic vaccines for infectious disease indications. So we do not regulate other therapeutic vaccines, such as cancer vaccines.

And I wanted to just make sure that everybody is on the same page, and provide a definition of "preventive vaccine." And I'll just give you a few minutes to read that.

Then another couple of other items I wanted to make sure that we had the same perspective on, in terms of definitions, were the preclinical safety assessments. We feel this includes the product characterization, as related to safety, animal safety testing. And both of those things are required for initiating clinical trials.

And preclinical safety assessment, then, is a subset of non-clinical safety assessment; which would include, in addition to preclinical safety, any further safety assessments that would be required during the various stages of clinical or product development. Such as, if any significant changes are made to the product and/or the formulation, then there may be additional safety studies required; and/or if any safety concerns arise during the phase I or phase two clinical trials, then additional safety studies may be required.

This slide lists the key components in nonclinical studies for preventive vaccines. On the left you
see there is product characterization, in terms of
characterizing the product by biological, physical, and
chemical means. And then the next important aspect is
manufacturing and the challenge in developing a
manufacturing process that, as the product development
proceeds, begins with first having control over the
starting materials, and then gaining in process control
testing and, as the development proceeds to phase three, to
establish validated process procedures and to ensure
consistency in manufacture by establishing lot release
specifications that ensure product purity and potency, and
to fully evaluate the stability.

But for today's purposes, we'll be focusing on the right-hand side of the slide. And this includes safety studies that can be performed either in vitro, or animal studies that would include immunogenicity. And this might be part of establishing the potency of the product. It would also include pyrogenicity testing, which would be

performed as part of the purity analysis of the product.

And also, of course, general safety testing.

And for certain types of products, there may need to be some neurovirulence testing performed--for example, for live or attenuated organisms. And then, for possibly attenuated organisms or inactivated toxins, you might look for reversion to virulence for those types of products.

And in addition, there may be a need to do some additional safety studies. And this could include a GLP--or "good laboratory practices"--compliant toxicity study in animals.

Okay. Dr. Midthun mentioned that vaccines have been generally thought to be inherently safe products. But there is precedence for CBER requesting toxicity studies for vaccines. For example, when the target population includes pregnant women; when there is either a new route of administration or the product contains a novel adjuvant; and also, as I mentioned, when there are some adverse effects that may be observed in the clinical trials; then the sponsor may be asked to examine potential toxicity of the vaccine in additional safety studies designed to replicate the specific clinical event.

And if you were to look in the currently available guidance for principles on designing toxicity studies, you could look at these available guidance documents. The first one is the CPMP note for guidance—and this is a very comprehensive document—on designing preclinical pharmacological and toxicological testing for vaccines.

And then, there is the ICH S6 document, which focuses on biotechnology-derived pharmaceuticals; and the ICH S5a document, which describes toxicity testing for effects on reproduction.

And CBER has referred to this document in their own. The next one is the draft guidance document that CBER has published in September of 2000. And in the CBER document, CBER elaborated more on the considerations for reproductive toxicity studies.

And finally, there is the EMEA concept paper on the development of the CPMP note for guidance on requirements for the evaluation of new adjuvants in vaccines.

And there are also several published articles on designing toxicity studies for vaccines containing adjuvants; one of which is one published by Doctors Goldenthal, Joy Cavagnaro, Carl Alving, and Fred Vogel.

And we at the Office of Vaccines use this article a lot to help design clinical studies, non-clinical safety assessment studies for vaccines containing adjuvants, and for adjuvants.

documents, we feel that there still are uncertainties regarding the toxicity assessments of vaccines, such as those listed on this slide. For example, there is still uncertainty regarding which of the documents are most applicable for use for developing toxicity studies for preventive vaccines regulated by CBER, and whether or not toxicity testing should always be part of the product development. Is it necessary for every type of product? And if it is required, during what phase of clinical development should the studies be done?

And finally, if a study is needed, should it be designed using the conventional toxicity testing approach

used for drugs; and whether or not that would be applicable for vaccines.

So one of the reasons that it's difficult to write a vaccine-specific document, and probably why it hasn't been done so far, is that vaccines are a very complex, diverse class of biologic products. And it's difficult to come up with an appropriate study design, because vaccines act through a very complex mechanism, whereby the product itself is not the final triggering component; but instead, it's the elements of the immune system that are the effectors.

And so some of the questions that one has to address in designing toxicity studies for preventive vaccines is to try to approach all of these issues at the same time, and to design studies that look for inherent toxicity of the vaccine, as well as toxicity of the impurities and contaminants, as well as any toxicity that may be due to the components and individual antigens and other components interacting, and the toxicity linked to the immune response induced by the antigen.

So in terms of telling you today how the regulatory process is evolving, as Dr. Midthun mentioned, we feel that there is a framework needed for non-clinical safety testing for preventive vaccines. And we plan to use the existing documents as a base to develop the guidance.

And the goals of the working group are to make regulatory recommendations and/or requirements more transparent. And we hope that the guidance document would facilitate discussions between regulatory agencies and sponsors and promote relevant and consistent non-clinical testing and review within CBER.

And so, as Dr. Midthun mentioned, we have formed a preclinical safety testing and preventive vaccines working group. And we have already written the first guidance that we plan to write, which is the CBER reviewer internal document entitled, "Preclinical Toxicity Studies for Vaccines To Support Initiation of Clinical Studies."

Okay. I just wanted to mention that the CBER internal reviewer document is going to form the basis for the next document that we plan to write, which is a standalone guidance document for guidance for industry,

entitled, "Non-Clinical Safety Evaluation of Preventive Vaccines."

So we plan to use the CBER reviewer internal document as the basis to describe the general approach to toxicity testing in novel vaccines. And that would be the basis for the document. And then in addition, we would have sections on the individual product categories, such as those listed here, and also combination vaccines, and adjuvanted vaccines, and products given by novel routes. So that is one we are still working on. And one reason why we are here today is to get input on the issues, so we can continue to work on that document.

And now I'd just like to go over what principles we have listed in our CBER reviewer document, so you are aware of our approach so far, although it's not written in stone. This is what it is to date:

We have tried to clarify for what product types preclinical toxicity assessment is needed;

We have tried to clarify the timing, the extent, and the approaches to the design of the

safety studies, to support initiation of clinical trials;

And we have described the extent of preclinical documentation required prior to initiating the clinical trials.

So the principles that we have outlined in the document indicate that there is a need for preclinical toxicity—or that the need will depend on risk-benefit considerations, what the target population is, what the route of administration is. And we will also need to look at the available clinical data from the use of related products. And you'll also need to consider product features, such as novelty. And finally, the availability of animal models, relevant animal models.

And the bottom line is that, in considering all of these different items, one needs to use scientific judgment, and that should be the basis for the decision.

And it will be on a case-by-case basis.

And this is just a slide to illustrate sort of the clearer areas where you can decide whether or not a

preclinical toxicity study would be needed for a particular kind of product.

It would likely be needed for a product if it contains a novel adjuvant or a toxic adjuvant for which there is no existing preclinical or clinical data; and if the product is from a novel product class for which we don't have extensive clinical experience; or if it's to be given by a novel route of administration.

And it's likely that you may not need a toxicity study to go into a phase I study if the product category is one from which we have extensive clinical experience, or a product for which there is a great amount of product characterization. And this would usually include already licensed products. And also, combination products, including licensed products, you would likely not need to do a toxicity study again.

In terms of the timing, the CBER reviewer document indicates that if the product is one for which the toxicity study is going to have to be done, then it should be done prior to initiating the phase I clinical trials.

And we recommend in the reviewer document that the sponsors agree with CBER, prior to or during the pre-IND meeting, in terms of the design of the preclinical toxicity study. And this would, of course, require having adequate information from the sponsor on the clinical plan they propose. And we also recommend to reviewers that the sponsors submit the protocols to us for review prior to initiating the animal studies.

And once the toxicity studies have been done and you come in with the original submission, the sponsor should include the toxicity study report, which should include a full tabulation of data and line listings, all organized into well organized tables.

And finally, the additional toxicity studies, in addition to those required to phase I, may be necessary as the product and clinical development continues.

And so the next part of the CBER reviewer document, and of course the meeting today, is to focus on this question: How to design appropriate non-clinical safety evaluation programs for preventive vaccines.

I would like to go over the considerations that we have outlined in our CBER reviewer document, in terms of what things to consider for designing the toxicity study. And the goals of the toxicity study should be adequate to identify and characterize toxic effects. And we understand that no one study design is perfect for all product categories.

But in general, the parameters to be considered in designing the toxicity study should consider animal species and strain; and the clinical plan, in terms of what's the proposed dosage form, dose, and route of exposure, and frequency of exposure, and whether or not the product will be delivered by any particular kind of device; and then of course, the product features, in terms of whether it's novel; and other product features and previous data that may need to be considered in designing the appropriate toxicity study, in terms of what is already known about the product.

And finally, the toxicity study should be designed to try to evaluate potential toxic effects on the

target organs and the immune system. And the reversibility of any observed toxic effects should be evaluated.

So in terms of the approach that we currently have in our CBER reviewer document, the principles are outlined here. But once again, it's not carved in stone.

We would recommend that sponsors could either do a dedicated stand-alone toxicity study, or they could do the toxicity study in combination with other safety, activity, and efficacy studies that they would be planning to do.

We feel it's very important to use the relevant vaccine formulation. For example, if the product will be containing a novel adjuvant, you would need to look at the adjuvant alone and in the formulation that is planned for clinical use.

And in terms of correlating with the clinical study, you also need to use the route of administration and the dose that you plan to use in the clinical study. And the total number of doses should exceed the number of clinically administered doses. And when giving the doses to the animals, it should be done episodically. And the

toxicity study should include control arms, appropriate control arms. And finally, the study should be done in a relevant animal model.

Now, just a few words on selecting a relevant animal model. The animal model should be chosen to evaluate safety in an animal model that mounts an immune response to the vaccine and, if possible, an immune response that's predictive for the human response.

And additional considerations for choosing the animal model might include the age of the animal relative to the clinical study that's planned; for example, whether the study will be done in the elderly, or in the pediatric population. Another consideration for choosing the animal model is whether or not to use naive animals, versus partially immune or immune animals.

So in our CBER reviewer document, this slide sort of outlines the parameters that we recommend be monitored. The study should look for local reactogenic and systemic events and immune mediated events; and should also include in-life parameters, such as clinical observations, body weight, and food consumption; and also, laboratory

parameters, serum chemistries, hematology, and immunogenicity. And full necropsy should be performed, to include evaluation of organ description, weights. And this should also include selected histopathology. And finally, histopathology on immune system target organs should be performed, as well as immunogenicity in the laboratory parameters.

So in summary, I think I have told you that nonclinical safety assessment, we feel in OVRR, is a key component in vaccine development; and that we are developing vaccine-specific guidance for non-clinical safety assessment of vaccines; and that the approaches towards toxicity testing for certain products we have tried to define, but that's still open for discussion.

And so we basically wanted to answer two questions: For which product category type should toxicity testing be performed? And, how to best design appropriate toxicity tests for preventive vaccines.

Just to go over now what we're here for today and what we hope to accomplish, we plan to discuss, and would like to invite you to discuss, the methodologies to

determine potential adverse effects of new vaccines and adjuvants. We plan to discuss toxicity study designs and animal models, relevant animal models.

And if possible, we would like to try to reach a consensus on the most appropriate -- that is, the most scientifically sound--yet feasible approach to safety assessment of investigational new vaccine products.

We would like to consider all of these aspects. And we have provided some questions in your packets. And we hope to deal with all of these topics today, and we really are seeking your input.

And then, that pretty much does it for my presentation. If there are any questions regarding clarification of what we are trying to accomplish today, I'll take those questions; but otherwise, I think I'll hold any questions on the topics till the roundtable discussions.

> If there are no further questions, then I would--PARTICIPANT [In Audience]: Liz?

DR. SUTKOWSKI: Yes?

PARTICIPANT [In Audience]: You talked about product class, and I'm not sure what you mean by that.

DR. SUTKOWSKI: I guess I should have said

"product category type." You know, is it a DNA vaccine?

Is it a live organism? Is it any of those products that I had listed there, product types? Does it have an adjuvant?

PARTICIPANT [In Audience]: There are some product categories that do not [inaudible] safety testing [inaudible].

DR. SUTKOWSKI: Well, the slide where I have where it's likely, no. Those are generally the kind of product categories that it's not required. But that's just a product category type.

Yes?

PARTICIPANT [In Audience]: Do you have a time line for turning your internal document into a formal guidance document?

 $$\operatorname{DR.\ SUTKOWSKI}$:$\ \mbox{We're hoping to do that in the}$$ next year.

[No Further Questions.]

DR. SUTKOWSKI: Okay, then. Thank you.

[Applause.]

DR. SUTKOWSKI: Now it gives me great pleasure to introduce the next speaker, Dr. Francois Verdier. Dr. Francois Verdier, PharmD, PhD, is the head of product safety assessment at Aventis Pasteur.

He is in charge of establishing and assessing the non-clinical safety investigations required for new vaccines and adjuvant for clinical trials and marketing submissions. He is also involved in the safety issues for commercialized vaccines.

He worked previously for a contract research organization, first managing toxicology studies, and then advising pharmaceutical companies on the toxicology requirements for pharmaceuticals, and particularly for biotechnology-derived products.

He graduated in pharmacy at the University of Lyons, and received his PhD in immunotoxicology in the University of Paris. And this is still one of his fields of expertise.

Francois Verdier is also a Eurotox-registered toxicologist, and a French national expert for the OECD guidelines.

Francois, thank you for coming today.

INDUSTRY PERSPECTIVE:

BY FRANCOIS VERDIER, PHARM.D., PH.D.,

PRODUCT SAFETY ASSESSMENT, AVENTIS PASTEUR

DR. VERDIER: Thank you, Elizabeth, for this kind introduction.

So thank you, too, also, all FDA and SOT members, for the organization of this meeting. I think it's a great opportunity to discuss vaccine safety and to make progress in vaccine development.

In my presentation, I would like to present the industry perspective. And you will see that there are a lot of overlaps with Elizabeth's presentation. So it means that we have a lot of agreement with the FDA regarding vaccine safety assessment.

Also, I would like to mention that I did not make any survey in the vaccine industry to prepare my presentation, so this is my position. And I hope that

during the discussion session I will have some challenges from my colleagues from other vaccine companies, in order to have a fruitful meeting with fruitful discussion.

First, as an introduction, I would like to mention some trends concerning perceived vaccine safety.

It was already touched on by the first speaker, and I would like to reinforce the fact that it's true that vaccines provide undisputed benefits to human health.

But also, vaccine safety becomes a major public concern, particularly in developed countries. It is true that the majority of vaccines are given to healthy children. And it is also true that the risk-benefits ratio is looked at on the individual level. People expect a risk of zero from vaccine, even if it is theoretically impossible. And we know that perception of risk outweighs the perception of benefit in the public. And we can see also an increase in the activity of anti-vaccine groups.

So taking into account these trends, and also perhaps due to some recent public health issues, such as the "Mad Cow" Disease, or the contaminated food product issue, there is an increased responsibility for the

agencies and also for the vaccine manufacturers to work on vaccine safety assessment and to develop new methods in this way.

I would like to illustrate these trends—at least hear some unsubstantiated claims between vaccines and disease. Perhaps for the two first claims there are some scientific hypotheses: Lyme vaccine and autoimmune arthritis, with the possibility of molecular mimicry in terms of vaccine; and Guillain—Barre syndrome.

But for the last four examples, there are no real scientific data explaining these hypotheses: Combined vaccines and autoimmune diabetes; Hep-B and multiple sclerosis, this is mainly a French issue; MMR vaccine and autism, that is mainly a U.K. issue; and recently, aluminum hydroxide on macrophagic myofascitis, again mainly located in France.

So at least from these claims it's obvious that we need to provide good scientific data, good non-clinical safety data, to argue on these claims.

Also, if you are not yet convinced about the usefulness of non-clinical and clinical safety studies, I

have listed here some examples of adverse reactions observed during non-clinical studies or during clinical studies.

And it could be tissue necrosis at the injection site during animal studies. Kidney lesions, also: I observed this kind of lesion in primates after the administration of a cancer vaccine with GM-CSF as an adjuvant. Also, a vaccine antibody binding to animal tissues. And we observed that with polysaccharide Meninges-B vaccine. However, this binding was not associated with adverse reaction.

During clinical studies, I have listed here some adverse reactions. The old but very bad story of the Formalin inactivated RSV vaccine.

[Tape Change.]

1B

DR. VERDIER: Also, I noted some fever after the administration of a Japanese encephalitis virus vaccine during a clinical trial. And also--less severe again-swelling after repeated administration of cellular pertussis vaccine.

So in front of these findings there are two potential strategies, two potential positions: either what I call the "ostrich strategy," or the "hunting dog strategy." And you will see at the end of my presentation which is for me the best one.

I would like also to reinforce one of the slides from Elizabeth; the fact that vaccine safety evaluation is not limited to toxicity studies, as for a lot of biotech drugs. It's clear that we have to take into account the data provided by our colleagues from the quality control department. It is very important to know the quality of the raw materials; to know the stability of the product, including the genetic stability for viral construct.

Elizabeth mentioned also some biological assays, such as general safety tests, neurovirulence, replication competency for viral vector. And all these data should be evaluated with the non-clinical safety studies to build the preclinical package for the safety of the product.

Also, it was mentioned this morning that it's quite difficult for toxicologists to work on vaccine,

because there are in fact various kinds of toxic effects which need to be taken into account.

The first one, intrinsic toxicity, is perhaps not the major one with vaccines, because we are giving low quantity of antigens and the frequency of administration is not so high. But it could be applicable to adjuvant or excipient mixed with the antigens.

The other type of toxicity is the toxicity associated with the pharmacodynamic activity of the vaccine, and it's probably more important for vaccine; for example, the cross reactivity between self antigens and vaccine-produced antibodies. It could be also the modification of the TH1/TH2 orientation, and any other potential toxic effect associated with the immune response triggered by the vaccine.

More complex is what I have called the biological toxicity; namely, the adverse responses that are related to the activation of preexisting biological processes. And this is, for example, the exacerbation of preexisting autoimmune diabetes.

Also, we have to keep in mind the potential adverse reaction due to the interaction either between different antigens or between the antigen and the potential adjuvant.

And last but not least, potential toxicity of contaminants and any residual product from the manufacturing process. So you see, the task is hard.

Perhaps this slide seems very basic for a lot of you. But I think it's good to mention the GLP. And there are a lot of new players in the vaccine field which need to take into account this requirement.

GLP is a quality system which is applicable to non-clinical safety. And therefore, non-clinical safety studies must be conducted under GLP. And this includes in vivo toxicity studies—I mean animal studies, either single or repeated dose toxicity studies—but also, all the in vitro tests, all the in vitro toxicity studies performed on vaccines, such as genotoxicity tests for adjuvant, or any new in vitro tests.

However, as is mentioned in the ICH Guideline S6, some part of non-clinical safety studies using very

specialized test systems, such as immunological assays, may not be able to comply with GLP. And in this case, you can clearly mention in your product that one specific test will be performed outside GLP.

So what are the prerequisites for animal toxicity studies to enter in phase I for vaccine candidates? The logic would say that we should start with acute toxicity study. However, it is not always strictly needed, because sometimes you can get this kind of information from your quality control test battery. Plus, you will get data from general safety tests.

And therefore, in a lot of cases we start directly with the pivotal repeated dose study mimicking the human immunization schedule. And this repeated dose will be really a strong support to start the phase I.

It's usually performed in one species, but we will try to add in this repeated dose study a lot of parameters in order to collect the maximum information. We will add immunological investigations, and I will explain that later. And we will also do some local investigation. We will do the histopathological evaluation of the

injection site, in order to get some information on local tolerance; and avoid perhaps to perform another study just for this kind of investigation.

And then, on a case-by-case basis, as it was mentioned this morning, we will add some other parameters, such as safety pharmacology; viral shedding, if we are dealing with a live virus; or biodistribution evaluation, if we are dealing with a genetically modified organism.

So let's speak a little bit about the protocol for this repeated dose study. As I mentioned before, the key rule is to try to mimic to be as close as possible to the human immunization schedule. So we will prefer a sequential treatment, versus a daily administration. For example, I used to give the product every two weeks.

This is true for the vaccine. We will see that for the evaluation of a new adjuvant. We may come back to the classical rule of daily administration for a new drug entity.

We will also try to maximize the exposure. And I usually have one additional injection, as recommended by the FDA, compared to the human design.

If possible, we use the human route of administration. And in the study, I am used to include two necropsy time points: one early, one or two days after the last vaccine administration; and another later time point, two to three weeks after the last administration.

Regarding the number of animals, I mean, we use the rules used for all types of drugs. Usually, we use ten rodents per sex and per time point. And if we are using monkeys, it's two to three monkeys per sex and per time point.

About the selection of the relevant species, I think it's really the essential question. And I hope that we will have a lot of discussion about this point. Brian will present some slides and will discuss the various options and the logic in the selection of the animal species. But I would like here to present some advantages and disadvantages of some species.

It is true that the rat is the preferred species for toxicologists. I mean, we have a lot of background data in this species. It's a middle-sized animal, which allows in a lot of cases to inject one human dose per

animal, and also to collect a sufficient amount of blood sample.

However, we don't have always some immunogenicity data, and we have to acquire this immunogenicity data. And immunologists prefer in fact the mouse. But as far as toxicity, the mouse is, unfortunately, a very small species with limitation regarding samples.

Concerning the rabbit, I know that it is an historical species, and I know that the FDA likes this species. However, it's a very delicate species, and we have few background data in general toxicology for this species.

Regarding the monkey, it's probably the gold standard. We have a lot of information regarding the monkey immune system. And there is a close homology with the human immune system. However, it's an expensive species.

Another question which will probably be discussed today is the number of dose levels: Should we use one dose level or two dose levels? If we use one dose level today we are generally using the highest possible dose level,

using one human dose per animal or, if we can achieve that, we use the maximum feasible volume in the selected species.

However, there is some tendency to think about another dose level. And in this case, the lowest dose level could correspond to the pharmacological dose. I mean a dose triggering an immune response in the selected species.

What about the parameters? And Elizabeth listed some of them. I think for the parameters we should follow the guidelines already existing for classical pharmaceuticals.

In my study I'm used to including body weights, with a weekly evaluation; clinical signs daily; body temperature, particularly in non-human primates, and on several occasions after the first and subsequent treatments; ophthalmological examination; cardiovascular examination, mainly in non-human primates, in order to include safety pharmacology parameters during the repeated dose study; hematology and serum clinical chemistry data; necropsy time points.

Again, we can discuss today about the usefulness to add this type of analysis during the course of the study. Is it sufficient to have data at the end of the study, or do we have to add satellite animals to obtain this type of clinical pathology information?

And then necropsy: We do a full necropsy, with microscopic examination of the tissues and organs. We measure organ weights, and we do a histopathological examination for quite a large list of tissues.

Immunogenicity: I mentioned also that we have to add this type of evaluation for vaccine toxicology studies for several reasons. The first reason is to confirm and to justify the selected species. We need a species which reacts to the vaccine.

It's also a good way to confirm the vaccine administration, as we are not doing pharmacokinetics or toxicokinetics in this study. And also, it's an additional proof of concept of the vaccine in an animal model.

There are two types of responses which can be evaluated: the humoral response, by ELISA or ELISPOT assay, or by other types of tests, such as neutralization

tests. Usually, the humoral response is evaluated in serum samples. But sometimes you can also use nasal or vaginal lavage for the evaluation of the mucosal response.

The cell mediated immune response is more complex to evaluate, particularly because we don't have always the right reagent in animals. And it's also very difficult to collect the cells, and to protect the cells, and to do this assay very rapidly. The methodology: ELISPOT assay, or the intracellular cytokine detection.

What about the timing for this pivotal toxicology study supporting the future of phase I clinical trials?

Usually, to design the study protocol we need to know some information about the clinical protocol. So it's sort of a "Catch-22" situation, because we cannot start a toxicology study without information about the next step.

But I think it's clear that the toxicology design will be based on the number of administrations in humans, on the targeted population, etcetera. So we need to obtain this information from your colleagues from the clinical department.

As mentioned this morning, there is a possibility to discuss the protocol with regulatory agencies; and perhaps particularly for non-conventional studies. If we send all study protocols to the FDA, I think they will have a huge amount of work.

Then we can initiate the in-life phase in the study as soon as the product is available. I usually prefer to work on a clinical batch, but it is not strictly necessary. We can work on a dedicated batch, either GMP or GMP-like.

And then, additional tests can be needed. But they can be performed prior to the phase I, or later on during the development of the vaccine before the licensing or before phase II/III trials.

And just to illustrate all these recommendations, I have put here one example of a monkey study, and I have selected one of the most complex designs. You have here a prime boost strategy, with priming with GMO, in fact, with a Canarypox vector expressing the vaccine antigen. And then we really mimicked the human design by repeating this

prime boost strategy. And we have the boost with the antigen alone.

And as you can see, we have reproduced here the human treatment scale with various groups in the study and various frequencies of administration.

As I mentioned before, we have added quite a lot of parameters, classical toxicology parameters, such as ophthalmology, cardiovascular examination, clinical pathology. But we have also added humoral and cell-mediated immunogenicity on-point.

As we are dealing with a live virus, we have added a viral shedding evaluation, to measure the shedding of the virus in the environment. And we have also added at the end of the study biodistribution evaluation by quantitative PCR, as we are dealing with a TMO administration. And this study was sufficient to support a phase I trial in humans.

Sometimes we have to add some specific investigations to this classical toxicology study. And it is really on a case-by-case basis. I have tried to present here some examples. But I think it will be very difficult

in a guideline to list all potential tests which can be required to assess the safety of a vaccine.

I have here just mentioned what we did for meningococcal vaccine. This was a vaccine using the transferrin-binding protein. And one of our questions was: Would antibody against neisserial transferrin receptor cross-react with human transferring receptor?

And therefore, in order to document this question, we did first a literature search, in order to see if there are autoimmune disorders associated with meningococcal disease. And we didn't find any data about this potential link.

Then we worked on computer in order to do sequence analysis, and we compared the sequence analysis, the sequence alignment, between neisserial and human receptor. And we didn't find any sequence homology or similarity.

And then, in addition to this literature search and then to the computer evaluation, we did some in vitro experiments in order to study the potential cross reactivity of antibodies from the vaccine on human tissues

by fluorocytometry. And we didn't observe any cross reactivity.

I have listed here all the examples of specific investigations which can be required either before phase I or later on during the development of the vaccine. It could be the evaluation of antibody dependent enhancement assay for Dengue vaccines. It could be the evaluation of disease exacerbation model for RSV vaccine; viscerotropism evaluation for yellow fever vaccine. And I think the list is long. It really depends; it's really on a case-by-case basis.

But what to do if there is no evident relevant animal model? This could be case, for example, for Dengue vaccine or small pox vaccine.

First, in my opinion--but I will be very happy to share a discussion with all the people in the room--in my opinion, it's very difficult to claim that there is no animal model at all.

Then, perhaps to reduce the number of animals used, but still to do something, you can combine an

immunogenicity study with general toxicity; with viral shedding, if we are dealing with a live virus.

We can also try to reduce the number of animal uses; perhaps to use only one species and to reduce this number to, for example, two-plus-two per group for monkeys; and to mimic exactly the human design, perhaps one single administration, and therefore a very short study.

As was also mentioned before, not all the studies are required before phase I. Some of them can be performed later on. And during the day, we will speak about the evaluation of the risk of autoimmune diseases. And Paul Henri Lambert and Mike Luster will in their presentation present this risk and the methods available.

Also, later during the development of the vaccine, the developmental toxicity studies can be performed. And this will be the subject of tomorrow.

And also, for clinically modified organisms we may have to perform biodistribution evaluations. This is true for GMO, and also for naked DNA vaccine. Brian I think will present a case study on this issue. This evaluation is intended to detect exposure of non-targeted

organs, particularly germ-lined tissues, to exogenous DNA.

And the method used is a quantitative PCR on tissue

fragments from dedicated studies or dedicated organs. And

if tissue or organs are positive by quantitative PCR, an

integration evaluation is needed for the remaining positive

samples.

Last but not least--and I think that this subject will be also exposed by Natalie Garcon--what are the requirements if we develop a new adjuvant or a new excipient?

And my position is in this case to first define the toxicology profile of the adjuvant or the excipient alone, by doing toxicology studies as we do for new chemical entities. I mean acute toxicity studies in rodents by IV route or IP route; repeated dose with daily administration in two species; pharmacokinetic evaluation; genotoxicity tests; and any other specific tests related to the structure or to the mechanism of action of the adjuvant or the excipient.

And then, when we have the toxicology profile of this product, we have also to combine this product with a

vaccine and to test the combination in a repeated-dose toxicity study. We have also to verify the pharmacokinetic of the adjuvant when it is combined in the vaccine formulation; and also, to perform on this combination the other studies requested for the adjuvanted vaccine.

Okay. So now I would like to conclude on this presentation by saying that a few decades ago vaccines were considered as safe, ipso facto. I think it's clear for all of us that today vaccine safety is thoroughly evaluated as well as all pharmaceuticals.

And I'd like also to put some more emphasis on vaccine safety evaluation. I like this sentence recently published in "Nature," saying that, "Predictions based solely upon epidemiological projections without solid scientific bases are often misleading."

I think it's clear that there are a lot of arguments justifying science-based non-clinical safety evaluation for vaccines. However, there are some remaining gaps between the existing tools, the existing toxicology methods, and an ideal, fully relevant preclinical safety evaluation.

And to finish my talk, I have tried to list here some potential corrective actions. First, by doing a toxicology study we will learn, and learning comes from performing these types of studies.

Second, potential corrective action: Perhaps we should encourage academic groups to make research in this field. I am thinking about the users of juvenile animals and the very interesting research performed in Geneva by Dr. Carol Sieglitz [ph] in this field.

Also, we need also perhaps to encourage to boost collaborative research and validation programs. I am thinking about the ILSI initiatives already done for classical drugs. Perhaps similar initiatives need also to be started for vaccine safety evaluation. Thank you very much.

[Applause.]

DR. VERDIER: Do we have burning questions before the coffee break? Natalie?

[Question Inaudible.]

DR. VERDIER: I think we need a sufficient number of data showing the quality of the preparation of the

product. When you will make your safety study, you need to archive with your raw data the information showing that you have prepared your product according to good manufacturing procedures.

[Question Inaudible.]

DR. VERDIER: For me, GLP is really limited to the safety end points. So you cannot use the word "GLP" for the manufacturing of the product. But it's true that you have to follow the GLP recommendations when you will manufacture your dedicated toxicology batch.

[Question Inaudible.]

DR. VERDIER: I am used to adding in my monkey studies ECG evaluation, plus obviously histopathological evaluation of the herd. In a recent study, we observed some histopathological changes in the herd. And that's why it could be interesting to see if these histopathological changes have consequences on the ECG. We measure ECG and blood pressure.

PARTICIPANT [In Audience]: We find measuring these [inaudible] monkey studies [inaudible] studies to be very unreliable; very difficult to interpret that data, and

often misleading [inaudible]. Changes are difficult [inaudible].

DR. VERDIER: No, I cannot really comment. I mean, I used to do that, and it's performed for classical drugs. So I don't have any argument to say that vaccines are really different. I mean, do you think that a dedicated safety pharmacology study will be better for that?

PARTICIPANT [In Audience]: I don't really want to go down that path. I mean, if you have concerns [inaudible] I might consider that.

DR. VERDIER: I can tell you that in this case we did a dedicated safety pharmacology study.

PARTICIPANT [In Audience]: So if you use that, if you use that approach, what's the point of including [inaudible] study? I mean, the only thing you can see is a very negative effect [inaudible], which I suppose is something. But it would have to be pretty dramatic to be able to see it [inaudible].

DR. VERDIER: You are perhaps right. I'm used to doing it only for primate studies.

Jean Villain [ph]?

[Question Inaudible.]

PARTICIPANT [In Audience]: It sounds like you may have to repeat that question. Or maybe you can go to the microphone. Because I think people in the back may have trouble [inaudible].

PARTICIPANT [In Audience]: My question to

Francois was what he means with the cardiovascular

importance introduced in the toxicity study, especially in

primates. And when I was involved at the RAVM in the

vaccine studies on pharmacology and toxicology, we found

out that there were important cardiovascular effects on the

blood pressure of the classical pertussis vaccines. And I

am wondering whether this is a more general feeling in the

vaccines, or whether it has been studied even?

DR. VERDIER: Well, I confirm that we do blood pressure and ECT.

PARTICIPANT [In Audience]: Yes. You mentioned in talking about dose, dose appropriate to generated immune response in the specific animal that was being used.

However, the position of the FDA is that the dose should be

the human dose; not something less, not dose per kilogram, but the actual human dose. So is this a specific disagreement that you have with the FDA?

DR. VERDIER: No. When I'm using only one dose level, I am using one human dose per animal, or the maximum physical volume. If, for example, I have in mind a mouse study, in the mouse you cannot always achieve this one human dose per animal. So in this case, you will give the maximum volume.

I am not in favor of changing the formulation of the vaccine. Because one way would be to increase the antigen concentration in order to have the one human dose per mouse. But in this case, you change totally your vaccine formulation.

So in rats, in rabbits, in primates, in a lot of these middle-sized species, you can for your highest dose-or perhaps for your unique dose, if you are just using one dose--achieve this one human dose per animal.

My remark was in the case of several dose levels in the same study. In this case, yes, the second dose could be just a pharmacological dose level.

DR. MIDTHUN: If I could say a word, Francois? I think the subject on dose is one that we plan to discuss in the roundtable discussion. And so you may want to defer that discussion until that time, at greater length.

PARTICIPANT [In Audience]: Francois, I've got to--Can I ask you a very nice question? Since you are asking toxicological questions, why one species?

DR. VERDIER: It's a very interesting question. I hope that we will discuss that today.

PARTICIPANT [In Audience]: And he thanks me to ask him.

DR. VERDIER: We say one relevant species, because we think that it's already difficult to select one relevant species. So the second species could be less relevant than the one you have selected.

So you have really an argument to say that one species is more relevant than another one. In this case, why do a second species in a lower model, if you wish? But it's true that if we cannot differentiate the relevance between a monkey species and a rat species, then perhaps you will have to perform a second species; but later on,

not to support your phase one. Perhaps to support your licensing.

PARTICIPANT [In Audience]: In your table of species, the pluses and minuses of using different species, you didn't include quinea pigs. Any reason for that?

DR. VERDIER: It's a good question. I will speak about guinea pigs this afternoon for hypersensitivity reaction. I think for general toxicological studies, it's quite difficult to use guinea pigs, because we don't have-It's a little bit like the rabbit: We don't have a lot of background data in guinea pigs.

It's a very delicate species. However, with some vaccines—I have in mind, for example, CMV vaccines. There are some publications about CMV vaccine and guinea pigs.

So then it's really on a case—by—case. However, I should tell you that I've never used guinea pigs for a general toxicology study, until now.

PARTICIPANT [In Audience]: Have you given a look at the liver; as there are old studies on BCG and the effects on Hexobarbital duration, effects on Hexobarbital

duration, sleeping time. Is there anyone that has included this type of evaluation in their vaccines?

DR. VERDIER: I didn't get all the words. You mentioned the liver?

PARTICIPANT [In Audience]: The liver, the liver metabolism, and Hexobarbital sleeping time is affected by the [inaudible] vaccine, and maybe also by pertussis vaccine.

DR. VERDIER: No, we didn't do this type of specific assays. We have, obviously, the liver as part of the organs for the histopathological examination. We have also some liver enzymes as part of the clinical chemistry parameters. But we don't do any functional assays on the liver.

We focus on hypertoxicity for some vaccines. I have in mind a yellow fever vaccine and [inaudible] vaccine using the yellow fever virus. In this case, we do some investigation on the liver, but it's mainly in vitro assays, rather than additional parameters in animal studies.

I think if there are no more questions, it's time for coffee break. Thank you very much.

[Applause.]

[Morning Recess.]

DR.Sutkowski: I think we'd like to get going again. I do have a couple of announcements.

I just wanted to point out, I neglected to say at the beginning of the meeting that this whole meeting is being transcribed. So by that I mean, obviously, not videotaped, but audiocassette recorded, and then it will be transcribed. And we hope to make the transcription available, along with the speakers' slides, available to you all possibly on some website that either the SOT or CBER would set up, to make the transcription summary or the actual transcription available and the speakers' slides available to you all.

I also would like to remind you that this is not a regulatory meeting. It is instead a scientific workshop. And we sincerely hope you have come here to help us work on refining our approach to non-clinical safety assessment of new vaccines and adjuvants.

We would like to get your views and, if possible, try to reach some sort of consensus on the most appropriate and most feasible methodologies that can be used to

determine the potential adverse effects of new vaccines and adjuvants, appropriate animal models for these evaluations, and the utility of these data for the design and conduct of clinical trials.

And once again, regarding the transcription, we would like to ask, if you wouldn't mind, to please state the question and then possibly the moderator will repeat the question. And if you would like to give your name and affiliation, that might be helpful, as well.

Also, in terms of how we envision these sessions to run, each session will begin with the chairperson giving a brief presentation to introduce and provide a general overview of the specific topic. And then following that, the chairperson may choose to present a case study, to go over aspects of a particular product for the purposes of providing an example of a product type to be discussed from a fundamental point of view.

Then the topic will be opened up for an interactive discussion. And during that time, we invite you to discuss the topic.

We would like to try to keep the discussion focused on the fundamental questions; rather than discussing the particular nuances of individual product categories.

You may either present your questions over the microphone or, if you prefer, you could turn in index cards to some of the SOT staff members. Let's see, what else?

We do know that there is going to be overlap in the issues discussed in the various sessions; but where possible, we ask that you try to stick to the topic at hand. And if the moderator thinks that the question may be more appropriate for another session, we may ask you to defer the question. For example, in general, I would like to suggest that we not discuss the various questions with respect to adjuvants until we get to the adjuvant session.

And if there are no other questions in terms of clarification, then let's begin with topic one.

I'd like to call on Sally Hargus, the regulatory toxicologist within our Office of Vaccines Research and Review in CBER at the FDA, who is going to be the moderator for session one.

ROUNDTABLE DISCUSSION:

SCIENTIFIC AND TECHNICAL CHALLENGES IN PRECLINICAL SAFETY TESTING OF VACCINES

DR. HARGUS: Hello, everyone. I would like to welcome today Dr. Brian Ledwith. Brian comes to us from Biologic Safety Assessment at Merck, where he is the director. Brian has a B.S. in chemistry from William and Mary. He got his Ph.D. in biochemistry from the Medical College of Virginia, and an MBA recently from the Wharton School, U. of Penn. He also did post-doctoral work at Merck in safety assessment, under Matt Bradley [ph] and Warren Nichols [ph].

Brian, thank you for agreeing to make this presentation on relevance of animal studies for non-clinical safety evaluation of vaccines.

THE RELEVANCE OF ANIMAL STUDIES

FOR NON-CLINICAL SAFETY EVALUATION OF VACCINES

PRESENTER: BRIAN LEDWITH, DIRECTOR,

BIOLOGIC SAFETY ASSESSMENT, MERCK

DR. LEDWITH: Thanks, Sally.

I'd first like to just give a very general overview into some of the concepts in choosing an animal model for carrying out these studies, touching on some of the points that Francois touched on earlier; but then use our studies of our adenovirus-vectored HIV vaccines as a case study, not to provide you so much particular data to those studies, but really use it as a tool to demonstrate our criteria for selecting animal models and other study design factors in developing these preclinical safety studies.

So of course, it's first very important when deciding on the animal models to really determine: What are the objectives in our preclinical safety studies? And of course, the fundamental objective is to provide

compelling evidence to support the introduction of a vaccine into human subjects.

And it's important that we realize that in the phase I population it's generally healthy individuals, and so our animal models are generally healthy animal model systems. And we have an understanding that many rare toxicities, idiosyncratic effects, or potential effects on certain sub-populations in the human population are generally often only addressable in humans. So by and large, animal toxicity studies focus on generally healthy animal models.

It's also important to realize in the design of these studies that we're trying to maximize the benefit-to-risk ratio of developing a vaccine; which means we want to minimize the risk by rigorous safety studies, but we also want to proceed with timely development of important vaccines that can affect human health.

Of course, one of the fundamental things we need to do is determine a safe dose for the phase I trials. And this is basically a no-effect level for toxicity, with an acceptable safety margin for humans. But here it's

important to realize, by "no-effect level" we're talking about significant toxicity, and not the desired immune response.

And in designing the studies, it's important to realize, again, we want very broad measures, because most toxicities are unpredictable. But in certain cases there will be a key theoretical concern for a certain vaccine type. And in those cases, it may be warned to include specific assays that may be more sensitive, or at least additional approaches for addressing those key theoretical concerns.

So for considerations for choosing an animal model, as we've discussed already, a major focus is on the relevance of the animal model with respect to immunogenicity; that it demonstrates the expected immune response that you're looking for in people.

This could be a humoral response, or a cell-mediated response, or both. And when choosing the animal model, it may be important to understand that for not all species--particularly rabbits for cell immune responses-reagents may be limited.

We want to have a sensitive animal model.

Hopefully, that way we've demonstrated that it does respond
to immune-mediated effects, or has been shown to be
susceptible to the intrinsic toxicity of the test article.

It's also important to realize that the intrinsic toxicity can be separated from immune-mediated toxicity. A classical example, of course, is pertussis toxin vaccines, where we use an activated pertussis toxin to remove the intrinsic toxicity. And this is tested in certain release tests. And hopefully, the only effects you'll see are the immune-mediated effects.

But two of the most important criteria from a safety assessment perspective are using models where you have experience, where you have large historical control data bases, so that you can interpret sporadic findings to determine whether they're just sporadic changes in a control incidence, or really a treatment-related effect.

And it's also important to be consistent, because we want to develop correlations with our preclinical animal models with respect to the clinical safety of those products when they reach the clinic.

Some additional considerations that have already been raised are whether it's important to do single or multiple species; whether we should use inbred or outbred strains when we're using rodents. At Merck we tend to use outbred strains because we feel it's preferable to have that diversity and heterogeneity in the test animals. So for mice we generally use CD-1 mice; for rats, Spraig [ph] Valley rats. And of course, we are concerned about species- or strain-specific sensitivity. And that's when possibly a second model may be of value.

As Francois alluded to, there are certain advantages between using large animal models versus the small animals. We tend to be able to use a larger number of animals per group when we're dealing with rodents.

However, the disadvantage there is that we may need separate groups of animals for separate end points; whereas in a large animal model, all end points could be carried out in the same animal.

Again, the issue of dose comes when there is a desire to inject a full human dose. Then you're almost exclusively restricted to a larger animal model. But the

disadvantage there, because of limitations in the amount of test article, etcetera, is that you generally have limited body weight margins, safety margins based on body weight.

And you can actually have much more exaggerated body weight margins in the rodents, which I'll show you in the case study.

And of course, additional models may be needed on a case-by-case basis, as Francois alluded to. An example of this would be a cancer vaccine contained in the self-antigen, where you may want to test a self-antigen in animals, meaning using the animal homologue of that test animal antigen.

[Tape Change.]

DR. HARGUS: Any other comments?

[No Response.]

2A

DR. HARGUS: Okay.

MR. BARKER [In Audience]: Lee Barker [ph],
Sequella [ph] Foundation. The second speaker said it's
hard to make a case for there not being a relevant species.
And I'm wondering how important, in considering whether a
species is relevant, the panel would consider natural

disease produced by the microbe of interest simulating human disease. Because that can make it relatively difficult to find a relevant animal.

And another very specific question that I think was touched on towards the end by the first speaker, Dr. Sutkowski, and that is a great many vaccines are given to either newborns or very close to newborn humans. So I'm interested in hearing some discussion about whether the relevant age is newborn or suckling animals. And I'm not sure how commonly that's practiced, but I'd like to hear some discussion of that. Thank you.

DR. HARGUS: Thank you. Who would like to take that? François?

DR. VERDIER: I think you touched here on a very important question: Do we have to use juvenile animals for a pediatric vaccine? You know probably that there are new guidelines for pediatric drugs. I think today we need to get more information about the immune system of juvenile animal models. We are not yet ready to use these juvenile animals in toxicology. And that's why I was mentioning at

the end of my presentation that fundamental research should be performed on juvenile animals.

The problem also is the feasibility of this model. I mean, if you give the drug by oral route, that's fine. Or by, perhaps, IV; that's fine. You can use juvenile animals. But if you give the vaccine by IM, I don't see how we can treat juvenile animals.

To give you also another example, for a vaccine intended for elderly people we used aged mice. So we altered mice at four weeks, and then we kept these mice for nearly six months in order to start a study on six-monthaged mice.

MR. : Yes, I just want to comment on what Francois brought up about. There is a draft guidance on juvenile animal studies to support clinical trials with drugs. That guidance I think is probably going to be published pretty soon.

But in there there is no statement that you should routinely do juvenile animal studies. You do it on a case-by-case basis. And I don't know, that's probably what's going to wind up with vaccines.

DR. HARGUS: Yes, another comment?

DR. VERDIER: Yes, I would like to have another comment on this topic, since we are very much involved in this type of work using very young animals. And one important point if we deal with vaccine is to consider the immune status and the development of the immune system soon after birth.

It's clear that a neonatal mouse has nothing to do with a neonatal infant. On the other hand, what we tend to see now is that a one-week-old mouse is much closer to the human infant, in terms of development of the structure of the lymphoid organs, the appearance of follicular and [inaudible] cells, possibly of developing an immune response. In fact, you find quite a lot of the deficiencies which can be seen in the newborn are seen also in a one-week-old mouse.

To what extent this can be used for toxicology and to assess the potential risk that we have there, I think that there is a whole bunch of work to be done there. And we know that for some adjuvants it's probably important to look at young animals as well, because we see different

types of reactions. But the knowledge is still quite limited.

MR. : I was actually going to touch on this in my talk, too, about small molecule programs. And I think we're still approaching the subject of whether it's feasible, whether it's relevant, whether the model is relevant, whether it's feasible to do the dosing.

With small molecule programs you certainly can make the argument about differences in metabolism versus—you know, young versus old animals. Here we talk about differences in immune response, young versus old animals.

It's not clear to me that we are ready to jump off that and try to do those studies now with vaccines. How we get to a point where we might be able to address that question is open for debate.

DR. GRUBER: Well, I just wanted to add a point.

I really think we would agree that we are not there yet,
asking for toxicity studies to include juvenile animal
models to assess the safety of a vaccine that is indicated
for an infant population. And not to say that there
shouldn't be research encouraged in that field, but the

approach that is usually taken, besides doing a toxicity study, is to then do your first clinical trial in adults, and stepping down to toddlers, and then to infants, to gather more on the safety data in older humans before you then go and do your studies in infants.

And I think that's the approach that is currently taken, and is something that is probably going to be employed for a while before we are at the point that we can entertain the idea of using juvenile animal models for assessing the safety of a product for the purpose of moving into a phase I clinical trial.

DR. HARGUS: Shall we move on to the next question? Go ahead, Stu.

MR. SHAPIRO [In Audience]: Yes, Stuart Shapiro [ph], from the Division of AIDS at National Institute of Allergy and Infectious Diseases.

I'd just like the panel to address the differences in safety testing between therapeutic and preventive vaccines. I notice that the guidance that's being developed is specifically for preventive vaccines. However, we increasingly see people--and it's not the large

drug companies, but it's mostly academic investigators—who have this idea that if they come in first with a therapeutic vaccine, first of all, it won't be reviewed by the same people—which I keep telling them this is not true. It's a vaccine for an infectious disease; it's going to get to the Office of Vaccines.

But secondly, they have the feeling that if they start off testing their vaccine as a therapeutic vaccine, the requirements for tox testing will not be as great; and then once they've had it in ten or 20 humans, they can turn around and say, "Oh, look, it's safe, it's got a safety profile."

But we know, those of us who have some experience with it, that they don't get the level of data that you get from doing a thorough preclinical tox study where you can necropsy the animals, sacrifice them at the end of the study and do thorough necropsies. And just the level of information you get is not the same.

So I would hope that you could first shed some light on the FDA's thinking about this; and secondly, that

when you're writing this guidance document, you take that into account, that this issue really needs to be addressed.

DR. HARGUS: Okay, I'll give this a shot. I can tell you that we don't get that many therapeutic vaccine INDs. By and large, we get--Right. Right. I mean, this is an emerging area.

And typically, the approach that we've taken is to be consistent in requesting a definitive preclinical GLP safety tox study for everything now; not across the board, but for a novel preventive vaccine, for a novel therapeutic vaccine.

And we would expect that the sponsors would provide us with an adequately designed preclinical safety study prior to going into phase I, which would typically be in an adult healthy population. And then after phase I, you would go into maybe a very small group of your target population. And then you would take it from there. But at this point, we are consistently requesting the up-front definitive safety study in a preclinical model.

MR. SHAPIRO [In Audience]: Then your guidance document should probably be for preventive/therapeutic vaccines.

DR. HARGUS: Well, I think we'd have to clarify what kind of therapeutic vaccine. And we'll certainly take that under advisement. Thanks.

Oh, Liz has something to say.

DR. SUTKOWSKI: I think perhaps if Mercedes has anything to add, that she should feel free to do so. But our program, in terms of how it's evolving, we have consulted all along with Dr. Dave Green's group in the Office of Therapeutic Vaccines, and we are striving to put this program in writing for vaccines. But we've consulted with them all along, and we are trying to be consistent.

And if Mercedes has something to add--?

DR. SERABIAN [In Audience]: Yes. This is

Mercedes Serabian. I was with the Office of Therapeutics.

I'm now with the Office of Cell Tissue and Gene Therapy.

When you say "therapeutic vaccines," I guess the first thing I think of is for cancer, because that's generally the indications that come in to us; not for

infectious diseases, if you will. Again, you have to consider risk-benefit. Many of these--obviously, cancer, a life-threatening disease. It depends on what's required preclinically.

At times there may not be a relevant animal model. It may be just in vitro studies that are done. It depends on your product and your--

[Question Inaudible.]

DR. SERABIAN [In Audience]: For AIDS? Well, I guess it would--You tell me, Karen. It would go to your group?

DR. MIDTHUN: Yes.

DR. SERABIAN [In Audience]: Yes. So I mean, I honestly can't respond, except through OTR experience. But the ultimate call would be with the OVRR group. You're correct on that, yes.

DR. HARGUS: Thank you, everyone. Let's move on to the next--

PARTICIPANT [In Audience]: Actually, I--Is it true? Do you think that you would deal with a therapeutic

vaccine for an infectious agent differently than as a preventative?

DR. MIDTHUN: Yes. This is Karen Midthun. I guess, just to say a few words, yes, it's correct. Office of Vaccines would have vaccines against infectious diseases that are for therapeutic indications, also.

And our approach would be to view those vaccines with the same safety considerations as we would view vaccines for the prevention. So that I think the same issues and considerations would go into that, also.

DR. HARGUS: Okay.

MS. CHRISTIAN [In Audience]: Mildred Christian,
Argus [ph] Research.

Well, we'll be spending a day tomorrow looking at reproductive considerations. I think that the speakers this morning also lead into the conditions in which one must consider that many of these vaccines will be given to potentially pregnant women, and also to pregnant women, and to pediatric populations, as ultimate populations that are to be treated.

And I'd like to follow the rationale for species selection a little bit. Because last year at a similar meeting on selection of animal species and testing for developmental immunotoxicity, we decided that it was not appropriate to use Balb/c mice most of the immunotox models that are standard will use for developmental tox studies, based on there not being sufficient historical data.

What I noticed was that developmental tox, when requested—And it will be requested more frequently, because pregnant women will be the test population. When tested, there is a tendency to go to the rabbit, which is fine. But in that case, one is attempting to potentiate the immune response to the maximum amount, either by giving boosters, or testing pre-pregnancy.

And I wondered if the speakers would address the rationale and say whether they conducted sub-chronic or other tests to show when the maximum amount of immune response occurred in an alternative species; since usually the primate is not practical for these tests, and a different mouse strain would be what they had as

information in their companies for developmental tox background.

MR. : I can say something. So in contrast to the other representatives from industry, we are doing most of our tox testing in rabbits.

To specifically address your question—And again,
I was going to talk about this in my talk. But you know,
we don't do traditional pushing to MTD and those kinds of
things; or even daily dosing, which may be an issue in
terms of designing a developmental tox study. But we
focused on the rabbit. There are issues with historical
database, but we do get a complete tox package in rabbits.
So we're going down that path.

DR. LEDWITH: In our approach we haven't actually carried out a DART study yet, but we are planning to in the next year or so. And our approach would be to use our validated model that's in-house, which would be the rat, and demonstrate the relevant immune response in the rat.

So rather than trying to adapt the DART testing to an immunogenicity model, validate the DART testing model

that we have established in-house by demonstrating the relevant immune response.

DR. HARGUS: Okay, thank you. Let's move on. Sir?

MR. GREENBLAT [In Audience]: Jay Greenblat [ph], National Cancer Institute.

The case study presented, you had no virusvectored vaccine. And a significant portion of the human
population already has an immune response that had no
virus. I was wondering if you thought it would be
beneficial to include a group of animals that were preimmunized who had no virus, or a similar vector?

DR. LEDWITH: We haven't done that in our toxicity studies because, all the evidence we had, that would only diminish the response to the adenovirus vector from a toxicological perspective. As I showed you in my talk, almost all of the findings related to toxicity were most pronounced after the first dose; and many not even observed after subsequent immunizations when the animals have neutralizing antibodies against the vaccine.

The issue raised is certainly an issue in the human efficacy trials. And that's certainly under consideration there.

MR. GREENBLAT [In Audience]: Thank you.

DR. VERDIER: To your question regarding several positive animals, I can give you another example. For RSV vaccine, we did studies with sero-positive and sero-negative animals, in order to study both cases.

MR. : To a certain extent, we've addressed the question, and it may cross over to another question, about a rechallenge experiment, whether we need to put in a rechallenge dose.

In reality, the repeat dose tox study, you might even think of that as a--you know, a challenge in the face of an ongoing immune response, or a preexisting immune response. And perhaps even a more rigorous test would be a rest period and then a rechallenge; which is one of the questions I think we're going to try to talk about, too, about the relevance of that.

But that in my mind sort of gets at that same question: whether the toxicity, in the face of an ongoing

immune response, is different, or a preexisting immune response is different, than in the absence.

MR. : Well, that makes me wonder about a particular issue which Brian had mentioned. And that is, he had conducted tox testing both in animals that you knew were undergoing an active immune response, and hence you had seen changes in lymphoid organs that you might expect: larger lymph nodes, larger spleens--Which, you know, you sort of cast over, saying, "Well, they were minimal." But it's something you'd probably want to see, I think, in an active vaccine.

DR. LEDWITH: Right.

MR. : I don't think it's something to be worried about.

And then, the issue then is, if you're doing standard toxicity studies where you're going into a higher dose of the vaccine to look for unwanted toxicities, would you be also measuring whether there is an immune response occurring at that particular time?

Because I think it would be unlikely, or it's a possibility that if you're in high dose you're going to be

inducing tolerance and you won't be seeing that in your response. So how do you distinguish between the changes you see, whether they're toxic or normal changes, that occur from a vaccine in an animal that's undergoing an immune response, versus those that are not undergoing an immune response? Because they're going to be quite different. I mean, do you monitor that?

DR. LEDWITH: We address it in the sense that the doses that we've used in our animal models are similar to-or are identical to the doses that were carried out in the immunogenicity experiments. So we know that under the dosing regimen we're using for our vaccine, for example, we're not seeing tolerance; that we've already characterized the extent of the immune response, whether we're seeing a boost or whether we're seeing basically a steady duration of the immune response. So those particular concerns really haven't come up in our studies.

MR. : But classically, then, what you're measuring is the toxicity of immune response. And if you're looking at a classical toxicity study where, for whatever reason, you go to a higher dose--most sensitive

individuals you're protecting, or whatever--you're not really addressing that specific question, right?

DR. LEDWITH: Yes, and this gets back to a little bit of what Francois was saying. We're limited by vaccine formulations, compared to small molecules, in being able to push the dose towards what I think you're suggesting, maximum tolerated dose types of things, where we will see overt toxicities.

And basically, what we can do is push to the highest dose that we can in these animal models, and then evaluate the toxicities with respect to whether they're expected, with respect to the immune response, or whether there are really organ-specific toxicities which really are not related to the desired effect of the vaccine.

DR. HARGUS: Okay. I think we'll take one more question, and then we're going to have to move on to the next speaker, in the interest of time. And for those of you who didn't get a chance to ask your question, please write it down on one of the cards and submit it to us. Or, if you want to wait until the next session—I mean the next

discussion period after Garvin, then you can ask your question then.

Go ahead, sir.

MR. SNOW [In Audience]: Yes. My name is Bill Snow [ph], AIDS Vaccine Advocacy Coalition.

And I'd like to go back to the basic question of this panel, which has to do with the animal models. The case study that was presented, presented three animal models: the mouse and the rabbit and the monkey. And each was serving a different purpose.

The question that I have is in the introductory tox, that was not required. I'm wondering under what circumstances--For example, if you had monkey immunology data from a preclinical lot that made the company confident to move forward, when could you cut back from those three? And under what circumstances in an exploratory vaccine program would you be able to get some human data before going to all of the expense and time of doing these tests and the manufacturing at the GMP level?

DR. LEDWITH: I'll take a first stab at that, because it was my talk that prompted the question. First

of all, our choice of using those three different animal models was basically voluntary. It was not required upon us. That was basically our study design, which we did discuss with CBER prior to the initiation of the studies.

And we chose to do two animal models for complete toxicity basically because, as many of you are probably familiar, there was great controversy about the use of adenovirus vectors in a gene therapy trial at that time, and significant safety concerns, some of which we felt could only really be evaluated in monkeys.

So we wanted to have both our more standard, small-molecule mouse toxicity study, combined with a second species, Rhesus monkeys, to adjust really for those particular safety concerns for adenoviral vectors. We don't do both species routinely for all vaccines.

And with respect to having an additional model for local tolerance, again, that was more of a voluntary, in-house procedure, because we've used rabbits for so long. Now, rabbits was not the best model for us for a full toxicity study. It's not validated at Merck for tox studies. But we have used it for intramuscular studies.

So we just chose to use that for local tolerance.

But we also evaluate local tolerance in the tox studies.

So it's quite possible in a single study to address the local tolerance issues as well as the systemic tox issues.

DR. HARGUS: Ken, do you want to go ahead?

MR.: Yes, just one comment I'd like to make, since you brought it up. One of the things—And I'll just make the comment, and this can be discussed later. I am wondering a little bit about whether the issue of systemic inflammatory response really was dealt with to the depth that I would have expected it to in this preclinical model.

You know, you look at the overall data that was presented, and there's a little glimmer of things going on. And when you're talking about a small number of animals, you want to explore that a little bit more in depth.

That's all I want to say about that.

MS. : I just had a more general comment. I thought—And perhaps I'm challenging the panel members and the audience here a little bit. But the session was about the relevance of animal studies and

animal models. And I think what we heard today is that animal studies are critical and necessary to get a feeling about the toxicity profile of a vaccine.

But what I haven't really heard this morning is a discussion about what the relevant animal model really is; and what the relevant immune response really is; and if we really should stick with the note that was made earlier to say we need to work with animal models for which we have a large amount of historical background and experience, so that we can interpret some sporadic adverse events that we otherwise in a non-traditional species would not be able to interpret.

But my question is if we perhaps have to compromise here a little bit and say, okay, we may not have a species that is validated by all means in that we have a large amount of historical data and background data, but that we know it's valid and that the immune response that is induced is somehow relevant to what we are really getting at.

And perhaps we need to discuss it a little bit more; if not today, then we can do it tomorrow. Because

the issues are somewhat similar, I think, and we can perhaps revisit this tomorrow. Because I think that there is a case to be made perhaps to really take a stab at looking at perhaps not the well established animal data in order to arrive at a more relevant animal model. And that's a comment I had to make.

DR. HARGUS: Okay. Thank you. At this point, I'd like to introduce the second speaker for this session, Dr. Garvin Warner. Dr. Warner received his Ph.D. in microbiology and immunology in 1986 from the Albany Medical College, and did a post-doc and was a research assistant professor in David Scott's lab at the University of Rochester Cancer Center.

In 1991, he joined drug safety evaluation in Bristol-Myers Squibb in Syracuse, and expanded the immunotoxicology and exploratory toxicology group there as part of the department of biologics evaluation, and was responsible for the early drug safety and development programs for a number of immunomodulatory, oncology, and therapeutic vaccine programs.

In 1997, he moved to Genetics Institute, Andover, and was responsible for a number of development programs for therapeutic protein. After Genetics Institute was fully incorporated into Wyeth Pharmaceuticals, then American Home Products, he was responsible for development programs in immunology and hemophilia.

He is currently the director of exploratory drug safety, Wyeth Research, Andover, Massachusetts, and is responsible within drug safety and metabolism for the biopharmaceutical, hemophilia, and vaccine programs. Okay.

And Dr. Warner, thank you very much for agreeing to make this presentation on the applicability of traditional drug toxicity study designs for safety evaluation of vaccines.

APPLICABILITY OF TRADITIONAL DRUG TOXICITY
STUDY DESIGNS FOR SAFETY EVALUATION OF VACCINES

PRESENTER: GARVIN WARNER, DIRECTOR,

EXPLORATORY DRUG SAFETY, WYETH RESEARCH

DR. WARNER: I have to apologize right off the bat because I may confuse people, in the sense that I tend to play devil's advocate. And you may say, "I thought he

said this, and now he's saying that." So bear with me on that. I'll try to generate some discussion here.

Words to live by. I often run into this problem when I'm dealing with--because I do cross over into the discovery groups--of why we're doing toxicity testing when we know that this is okay. This isn't going to be a problem. Why do you push that dose so high? You know, we don't need to do that; that's ridiculous.

But the reality is, we do toxicity testing to look for unexpected effects, not for expected effects. We use scientific judgment and try to think about what we might see, but the reality is we're looking for unexpected effects.

So I just really want to give you a little bit of view of drug safety evaluation from a traditional small-molecule company perspective and touch on: What's the point in a traditional tox study, or tox program; factors that influence the traditional toxicity program; selection of species—some of these topics are going to overlap with what we talked about last time—general flow in our tox

safety programs; and then sort of move on to whether vaccines fit the drug toxicity testing paradigm.

In the concept of maximizing exposure to the test article, does one size--I think we've already answered that question. Does one kind of study fit every kind of program? I think that's clearly "No."

The kinds of study designs: I will present a sort of straw dog study design at the end, really not from a viral--you know, from a sub-unit perspective for a vaccine program.

Issues related to the immunogen versus the adjuvant--we'll talk about adjuvant later--versus immunomodulator. I throw that in. Now people are starting to throw other things in besides an adjuvant; perhaps direct TH1/TH2 responses.

And then I've also put up here--and it's interesting, it's been brought up several times--the test article used in IND enabling studies. What do we need to have for that, in order to do our GLP/IND enabling tox studies?

So in a small-molecule program we establish an MTD. We push the dose to the point where we see toxicity. Indeed, some would argue that you haven't done a toxicity study unless you have toxicity. Otherwise, you've just shown that it's safe at that given dose.

So with most small-molecule programs, we can push the dose to an MTD. And we usually do it in two species—We always do it in at least two species. And primarily, we're trying to identify target organs of toxicity, to guide clinical research into what to look for in their clinical studies.

We establish a safe starting dose based on the no-toxic-effect level, or the no-effect level in the tox study. And the focus really is on exposure. We maximize exposure. We measure exposure. We do pharmacokinetics. We can talk about exposure relative to the area under the curve of our tox dose versus our pharmacologically active dose; which of course is a little bit of a problem in vaccines.

We can change dose levels. You know, we're non-restricted usually in the formulation; although that can

happen at times. We can increase the number of doses relative to the clinical study. We can change the schedule. We can change the route to maximize; go IV, if we want to look at a maximum systemic exposure.

And the studies are staged with increasingly longer durations of treatment to support the clinical program, and ultimately to support registration.

There are some factors that influence the study design, and perhaps the timing of the studies as we do them. But the reality is it's pretty--I don't want to say it's really straightforward, but it's reasonably straightforward about what we have to do for all of our small-molecule programs.

But there are issues, you know. If we're treating a terminal disease, oncology, that program may look different than treating asthma, for instance. You know, whether it's non-life-threatening disease; and whether there are other existing therapies.

Age of population: We touched on it already. We'll talk about women of child-bearing potential tomorrow

in developmental toxicity, but I also put up here juvenile and pediatric studies.

Now, with small-molecule programs, of course, we would do a juvenile study generally, prior to going into infants, or to less than--whatever, 16 years old.

With vaccines, the history has been that we don't do those studies. And again, as I said before, I'm not sure that they're really relevant in the context of a vaccine program, or whether we have enough information to know that they're relevant.

And of course, the duration of treatment: If we're talking about a drug for an acute indication, a single-dose study, that program will look different than one for chronic lifetime administration.

So we generally pick the most sensitive species in terms of any toxicity noted. I'm really giving my view here. And in terms of rodents, we prefer rats; but occasionally mouse. And certainly, it's often needed for carcinogenicity studies. Our non-rodent, we prefer dog; but sometimes we use non-human primates, or sometimes we do both.

And again--I'll jump down here--often the selection has to do with the relative metabolism in the two primary tox species, and the exposure. So generally, we'll either use the most sensitive species and/or the species that gives us the greatest exposure. So again, everything is exposure based.

I'm going to briefly touch on proteins. You know, historically, everybody says, well, proteins are dealt with differently than small molecules. And certainly, they have different issues. But again, and I bring up some of the issues that cross over into the vaccine area, right? So we need to demonstrate pharmacologic activity in the species selected.

Often, particularly with monoclone antibodies, an MTD can't be established. Okay? So in contrast to the small-molecule program, we can't reach an MTD. And the question always comes up: When do you stop dosing? When do you stop escalating your dose?

Often we end up with, as has been mentioned here before, dosing based on maximum feasible dose, based on the formulation that can be provided to us. And the toxicities

seen here are often associated with the pharmacology; like the vaccine programs where we're often worried about the response and not so much-well, at least historically, anyway--the intrinsic toxicity of the molecules themselves.

But we're able to measure exposure here. And generally, the greater the exposure, the more rigorous the test. And the question is: When do you stop dosing? When do you stop pushing that dose?

Immunogenicity: I'll bring it up. Here we've talked about tolerance already. Early on, immunogenicity was a big concern, "Oh, I can't dose. If I get antibodies in my animal model, I can't dose any more." Well, you know, that turns out to be maybe not the case. You can either dose through the immune response; maybe you induce some tolerance; maybe--I don't like that word; I'm an old "tolerance" guy. But "clonal exhaustion," whatever you want to cal it. But there's an example where, pushing the dose, clearly you can get over issues of immunogenicity. It's relevant to vaccines in the sense that pushing the dose in a vaccine may be the exact opposite way of where you really want to go.

So the general flow here, we do exploratory, non-GLP studies, often single-dose MTDs, with toxicokinetics, range finders, repeat dose. Sometimes these are GLP. And exploratory metabolism.

In phase zero, our IND enabling GLP tox studies, including the full battery of gene tox, generally a 28-day tox study with TK.

Some safety pharmacology. We've touched on that. We do dedicated safety pharmacology, cardiovascular safety pharmacology studies.

And the reproductive toxicity studies to support women of child-bearing potential. And of course, the timing of these is depending on the clinical population.

And that basically is phases I through III.

We're just keeping up with the clinic, trying to extend the duration of our studies to cover the duration in the clinical studies; and then start adding in things, depending on clinical plan: juvenile studies, chronic studies, reproductive toxicity studies, and ultimately carcinogenicity studies.

So do vaccines fit the drug toxicity testing paradigm? Does the concept of maximizing exposure to the test article, does it apply to vaccines? Now, we've got to separate out adjuvants. And are we really trying to do two things with our studies? Are we trying to not only assess the intrinsic toxicity, but we're also trying to assess the--I don't know, the pharmacodynamic toxicity, the toxicity of the pharmacodynamic response to the response [sic].

So the question to me is: What is the test article? Is it the adjuvant? I would argue that it's both; it's the adjuvant, and it's the combination. We look for it in the intended immunologic consequence. That is either anti-immunogen antibodies; the cell-mediated response, as several of the speakers have already talked about.

The question of: Will maximizing the exposure to the immunogen actually hinder the intended immunologic response? So Francois talked about using a dose--and we do this, also--a dose that is intended to maximize the intended response, and a dose that we do several-fold over.

And often, it is based on the formulation, the maximum feasible dose.

And of course, I should say in these animals that we're talking about mgs-per-K--or mgs-per-meter-squared, or however you want to gauge it--we typically dose on a per-dose basis, using the equivalent human dose if we can, and then some multiple of that. But built into that is a safety margin based on mg-per-K, as we've already mentioned, particularly in mice.

Vaccines are a complex and diverse class of products. And immunogens--I mean, we've had sub-unit vaccines; purified; recombinant DNA derived; live attenuated viruses, which have their own issues; CD&A vaccines; vector vaccines; and chemically synthesized vaccines and adjuvants. So clearly, for this gamut of things it isn't a "one size fits all" kind of a toxicity study that we can use for everything.

Dose selection? Again, we've already mentioned that a couple of times. I bring up the issue of a special tox formulation. That's come up several times in our discussions. We know what the clinical formulation is, but

if we want to push the dose, should we come up with a special tox formulation where we've increased the concentration of the immunogen?

Schedule: Maximize exposure again, like in a small-molecule program. Honestly, I would never think of going daily dosing in a vaccine study, even with an adjuvant. And we can talk about that later.

And then the question is: Do we trade off--And again, we're doing two things with the study. We trade off an optimum mean response for an optimized exposure to the test article.

Route has come up. Intended clinical route only?

I would say, yes. Other routes of administration to

maximize systemic exposure: At times, is that a relevant

thing to do? I mentioned before, sometimes we'll go IV,

even with the small-molecule program, to maximize systemic

exposure. Is there a place in a vaccine program to do

that, also?

And then, the duration: Generally, as has been brought up several times--We call it the "N-plus-1" convention, the number of clinical doses, plus one. What

also has come up is the rechallenge issue, whether we should build into studies a rest period and then a rechallenge. Because often these vaccines will be used perhaps more than one sequence of immunizations during a lifetime.

Immunogen, versus adjuvant, versus immunomodulator: Do we need to assess individual toxicity in each one of these things? In general, I'll just give you a paradigm for our sub-unit vaccines. In our tox studies we include an adjuvant alone, the immunogen alone, and then combinations of the immunogen and the adjuvant.

Usually, when we do the immunogen alone, it's a top dose, in the combination arm of the study. And if we're doing two dose levels of the adjuvant, it's at the top dose of the adjuvant. And we'll discuss the novel adjuvants and the adjuvant issues later.

So finally, I just want to touch on this issue of test article used in the IND enabling studies. This is less of a problem for the small-molecule program people because by the time we get our stuff, they're talking about their first 50-kilogram batch and things like that.

But there are questions regarding the contaminant profile. It's come up in a couple of other talks, too. So we're not only assessing the activity or the toxicity of the active ingredients, but also of the contaminant profile. So this needs to be representative of the clinical material.

It should have a similar activity profile. It may not be GMP; it may not be fully GMP compliant. But what data should we have to say that it's representative of the clinical material? Especially given that often at the time that you run into tox studies, you don't have the clinical material yet.

A similar biochemical, biophysical profile, is that sufficient? And of course, the question that always comes up in dealing with protein programs, too, is: When is a change a change? So scale, ten-fold scale, a new peak on size occlusion chromatography, those kinds of issues.

And this is what was also touched on a little bit, too: Sometimes the clinic is used to decide which gets brought forward and how much preclinical work is necessary to do those human immunogenicity studies. I

mean, I think HIV is a particular example of that, where we're bringing a lot of things forward, in hopes that our human studies will tell us what works best, or what is likely to work best. And the question is, in a lifethreatening disease like that, is there some minimal amount of work that we can get into a phase I study?

So here's my straw dog of a tox study. And maybe we could just leave this up here and, again, perhaps open the floor to questions. So I'm talking about several questions.

So actually, up to here is a four-dose study. You know, typically, N-plus-1. We're going to do four doses. The question: Interval; how long between doses? I've heard two weeks mentioned. We've done four weeks, because that's what the most aggressive schedule in the clinical is going to be. What should that decision be based on? What should the decision on dose be based on?

Early necropsy? How long after that last dose should we do the necropsy? Should we do two necropsies? Should we look at one--I would argue that perhaps

conducting a necropsy at an optimum point, when the immune response is expected, is the appropriate place to do it.

I certainly haven't listed all the clinical end points here, and there were other ones here. But I'm really lumping everything together because, in honesty, the tox studies that we do--which I've already mentioned, we often do do rabbits--it's a full tox panel that we would do for a small-molecule program. A full histo; we add in measuring immunologic parameters associated with the pharmacology. But it's a full tox path assessment.

So I don't know, questions from the floor? Do you want to open up the questions again? Really a continuation from the last questions.

DR. HARGUS: Let's thank Garvin.

[Applause.]

[Tape Change.]

2В

DR. HARGUS: --discuss the topic of animal models along with the topic of study design considerations. Let's open the floor to questions addressing those two broad issues.

MR. VAN DER LAAN [In Audience]: I have first a question on the--Jan-Willem van der Laan. I am a member of the safety work part of the CPMP.

With respect to the dose and the dose level and the number of dosages, I'm not sure--and maybe the immunologists on the panel can answer--whether the immune response is dose dependent. I expect at least a bit.

And if Dr. Verdier is indicating that one dose is sufficient, how to be sure if you have to do yet the phase I, how to be sure what is the human dose. And I think that our questions which came up during this lecture of Dr. Garvin [sic].

DR. WARNER: I think that is a good point. And Francois mentioned trying to get the clinical plan before designing the tox studies, which is sort of related. But you're right, that top clinical dose is a guess, honestly. I mean, in the sense that we're talking animal models, and the reality is that we don't know that it's going to be relevant to the human dose, the needed human dose.

So, you know, it's sort of a development question for the people in development. Because talking to the

research people, they're saying, "Ah, this will work." And that may be true.

But we do try to--I try to influence people to build in some safety margin there: the highest anticipated clinical dose, and then some multiple of that. So that when we get into the clinic, we have some room to move; and that the tox study supports dosing at higher levels than based on the mouse immunogenicity--or in our case, we do rabbit immunogenicity.

PARTICIPANT [In Audience]: Garvin, does it matter whether or not you use body surface area or body weight?

DR. WARNER: So, okay, if you use mgs-per-meter-squared, all you're doing is building in an extra factor.

PARTICIPANT [In Audience]: Yes.

DR. WARNER: If you want to do that, say you've got to, instead of using tenfold based on mgs-per-kg, just say use 30. The basis for mgs-per-meter-squared for small-molecules is based on metabolism and clearance. At least, that's the argument.

We don't know here whether that's relevant or not. If you want to build in additional safety margin, just build it in based on mgs-per-kg. That's my opinion.

DR. VERDIER: Jan-Willem, I agree with you that there is not a clear dose relationship for the immune response. And that's why perhaps one human dose is perhaps sufficient, because with high dose or low dose you will trigger the same humoral and cellular mediated response.

There are some cases where you have to test two doses. If your vaccine is mixed with an adjuvant, one human dose per animal could be too high, and you may have to test lower doses in order to avoid a very severe inflammatory reaction due to your adjuvant composition.

And also, I think I would like to emphasize the fact that I'm not really in favor of changing the vaccine formulation to test higher concentration, even if this is a way for new chemicals.

DR. GRUBER: If I can comment on that, too, indeed, when you have a formulation, and especially when you have the antigen--and I am more talking about recombinant antigen--and you have a specific formulation,

the interactions between each component defines your formulation. If you start going by mg-per-meter-square, or by weight, it doesn't mean anything any more in your formulation.

You change completely the system, and you may see responses that are not relevant to what you would see for the human response. So from our perspective, it's better to stay with one human dose, which in a rat or a rabbit is already in vast excess of what you would have in a human.

DR. WARNER: I agree. I'm not advocating it.

I'll play devil's advocate, though: It depends. It

depends on the adjuvant that you're using. It depends on
whether you can get stability at a higher concentration.

I was really thinking in my mind when I thought this through of maintaining a constant adjuvant level, and then changing the concentration of immunogen, and perhaps doing that in exploratory studies. So we could even define the immunogenicity profile, and see whether it's relevant. Again, I'm not advocating it. I'm just playing devil's advocate.

MS. NOVIKI [In Audience]: Hi. I'm Deborah Noviki [ph], from Chyron [ph] Corporation.

A lot of the comments that I was going to raise just got raised as the discussion was occurring. But I wanted to sort of just raise a point, and it was covered a little bit with the last comment. And exploratory studies are not really exploratory for Chyron, but the immunogenicity studies that actually justify the utilization of an adjuvant.

I depend greatly on the preliminary pharmacology and immunogenicity studies that my colleagues are running. And that actually helps drive a great amount of the way I design a study to do the toxicology.

I, too, use rabbits extensively, because primates and mice tend to be the species that our pharmacology and immunogenicity studies are done with. And what I've tried to do is work very closely with colleagues in immunogenicity studies and actually incorporate some safety end points into especially primate studies; not very much in mice at all.

But I think that working closely with those groups, utilizing long-term studies that toxicologists would almost never run--I mean, we'll run primate studies for a year or more sometimes. And those are important opportunities to garner data, even if it's not done under GLP and even if it's done with research formulation. So I think that's a really important thing to think about.

MR. : I agree completely. And not just for vaccine programs, either; other programs, too. There's a lot of potential safety information that can be gotten out of well designed pharmacology or, in this case, immunogenicity studies.

DR. HARGUS: Okay. Go ahead.

MR. GILMER [In Audience]: Yes. My name is Ian Gilmer [ph], from the EPA.

I was interested in the "N-plus-one" concept. Where I work we're interested also in cumulative and aggregate risk. Kids get anywhere from a dozen to 16 injections of different vaccines over a two-year kind of span.

So I'm just wondering about the kind of cumulative effect of the different vaccines. And perhaps this is more relevant to the adjuvant, mainly aluminum hydroxide. But you know, there seems to be more of an exposure than what's being tested, if you look at what's going on in real life.

MS. : So if I understand your question, it's more in the light of pediatric schedule vaccination, considering all the vaccines they get. What you're suggesting is that maybe toxicity studies should be done in light of those vaccines, and you should somehow prime the animal with those vaccines before testing your new vaccine, or co-administer?

MR. GILMER [In Audience]: Well, I'm interested in how the FDA--or looking at this just as an overall exposure in this two-year window; not just a single component. So, yes, that was my question.

 $$\operatorname{MR}.$$: I'm embarrassed to say that I don't know what has been done, in terms of aluminum toxicity.

DR. MIDTHUN: You know, I think in large part that's why we're here. It's really to say, you know: How should we really be looking at vaccines, all their different constituents, and really be collecting information in a very organized fashion from beginning to end?

You know, I think that clearly, once one gets into the clinical trials, that often times if a vaccine is to be administered on a particular schedule, it will usually be administered in the context of the other vaccines that are already part of the infant immunization schedule.

And you know, it's very important to have good clinical data and controlled clinical trials. But I think we also recognize that there are a number of things that we really need to learn more about, and certainly aluminum is one of them.

I think that we're increasingly moving toward the approach that you really should demonstrate that you need certain adjuvants, that certain excipients are really important to your product. And so I think that if you've

had recent experience with us, we will be asking you, if you come in and say, "We need this aluminum adjuvant of vaccine," we'll be asking you to demonstrate that you really do need that.

And so I think these are all issues that we're all very interested in learning more about. And I think that really ties into part of why we're here, examining some of these issues.

DR. VERDIER: I will not answer totally to your very interesting question. I will just perhaps justify why we need to perform 28-day or 14-day repeated-dose daily studies for new excipient or new adjuvant. It's to answer to your question. I mean, if an adjuvant is given several times in several vaccines, what are the potential toxic effects? And by doing classical toxicological profiles for new excipient or new adjuvant, we will partially respond to your question.

MR. : But part of the problem are some of the old vaccine components. I mean, I don't want to start a riot here or anything, but we did nominate aerosol

to the national toxicology program, and they are doing a workup of that.

DR. HARGUS: Okay. Go ahead.

MR. BAYARDI [In Audience]: Yes. My name is Marc Bayardi [ph], from [inaudible] agency and the University of Paris.

Can you comment a little bit on the immunotox end point you are planning to include in your protocol? There is a question mark, so I'm asking the question.

DR. WARNER: Well, I think we're going to talk about that later; aren't we? Way to pass the buck.

[Laughter.]

DR. WARNER: That is a true question mark, because we have not to date included anything that I would call immunotox end point. Histopath, draining lymph nodes, and things like that have been the only thing that we've really looked at to this point.

MR. BAYARDI [In Audience]: Okay. I've got a second question. It's a question for Elizabeth Sutkowski. It's about when you were talking about which kind of product we should include in a tox program. You described

the combination of products. You said it's not required for well-known products. I agree. And you said it's maybe not required for combination of products. And I just want to know why.

DR. SUTKOWSKI: Yes. I think that was on the slide--

MR. BAYARDI [In Audience]: Yes.

DR. SUTKOWSKI: --on this side, where it was likely not necessary for most commonly approved vaccines when they're in combination and approved individually, and possibly even for an investigational vaccine if there is enough data available preclinically and clinically; in terms of whether or not there is any concern about synergism or added reactogenicity when you combine them. But I think that's sort of a difficult question, and would have to be answered on a case-by-case basis for individual components.

MR. BAYARDI [In Audience]: Okay. So I mean, it is still open that if you're planning to develop a combination of products, that you should do tox studies?

It's on a case-by-case basis? You're not excluding right

away from the tox program? I don't know if my question is clear.

DR. SUTKOWSKI: Yes. I think it would have to be considered on a case-by-case basis. I don't know if anybody else would like to make a comment.

DR. GRUBER: Well, I just wanted to add something to that point that Liz just made. I mean, we had long discussions of even to show the slide, likely yes or likely no. Because we knew it would really put products into certain categories where they may or may not belong.

And combination vaccine is really one example. I mean, it really depends. And if you have concern that combining two already licensed products into one product and you have concerns that it somehow may raise the toxicity profile or cause some adverse events, so go ahead and do a tox study. Knowing this in advance is probably something that you don't, right? So that's why it really is something that cannot be answered in this forum. You would have to look at the actual vaccine formulation and the component that you're talking about in order to make a decision if you need a tox study in that case or not.

And the reason why we put up the slide is that we would attempt to categorize in order to decide what is the concern for having to do or to support a phase I clinical study with a tox study. And that's why this rough categorization helps. But it really is not cast in stone. And you almost could say that combination vaccines could fit nicely under both--likely yes, and likely no--categories, depending on the circumstances.

MR. BAYARDI [In Audience]: Okay. Thank you.

DR. SUTKOWSKI: Also, one more point. Due to the evolving nature of the vaccine technologies and safety issues, we highly recommend that sponsors come in for a pre-IND meeting. That's when you get together your basic product characterization profile, preliminary exploratory safety and immunogenicity, and at least an outline of the clinical study that you want to do. And then basically you get our input and our advice before you submit your IND. And you have time then to design and get concurrence with your plan.

MR. BAYARDI [In Audience]: Yes, I agree. My question was really to [inaudible] because since you are

going to have guidelines on this, if there is going to be a category of products in these guidelines, it's going to be difficult. Because in the FDA you're going to go do a pre-IND meeting. You are not going to do likely a pre-IND meeting in Europe, especially in France or other countries. So you will not likely have the contact with the sponsor and the agency before going to phase I, if the sponsor is not asking for this kind of meeting.

So it's important to not maybe try to set up categories in the guidelines. Because that was my feeling of the talk, it's maybe in the guidelines there will be categories of likely yes or likely not. And after it's difficult to manage, these kinds of categories, when you don't have this pre-IND meeting.

DR. SUTKOWSKI: I think in CBER we really do work on a case-by-case basis, and it's hard to generalize. I mean, there are certain things that we can generalize and we can make general recommendations. And I think that's what guidelines are for. And beyond that, if a sponsor wants specific advice on their specific product and their

specific clinical protocol, they need to communicate with us.

You know, you can always submit your IND, but then you risk having made investments that we may not necessarily agree were worthwhile.

MR. BAYARDI [In Audience]: [Statement Inaudible.]

DR. SUTKOWSKI: Yes. I understand. I understand. But I think that it's not cut and dried here.

DR. GRUBER: I'd like to add to this. I think the problem is—and it doesn't really matter if it's Europe or the United States or the U.S. FDA—the only formal forum we have to discuss a toxicity study is at the pre—IND stage. And that is for many companies already much too late to get good advice on a toxicity study, because many times the preclinical development starts ahead of the time. Then you come in for a pre—IND meeting, at which time you should have some sort of idea about whether your vaccine is reasonably safe.

And we have actually struggled with this at the agency. And right now we have to admit we don't have

another forum than the pre-IND meeting. And it has been a problem. We have accepted—And actually, I shouldn't say this here, but we have accepted informal, you know, fax submissions to just look at a toxicity protocol. But what you get is a very informal, non-binding advice, which is usually really not—Since we have many other deadlines to meet, it's not on the top of our priorities.

So the point is that also is not a forum that works very well to get early input on a toxicity study.

And sometimes I think, if this is so critical to really decide early on is it a vaccine candidate that is promising or not, we may have to look at some other mechanism of getting an earlier feedback, if this is something that you want.

I've been hearing this comment and concern over and over again, that the pre-IND meeting is fine, but at this time you usually have your toxicity study well underway or conducted. And then, if it was wrong, that could put you way back. And I think that's a problem here. In that regard, I don't think it is the issue in Europe. It's so different than here in the U.S.

DR. HARGUS: Okay. Go ahead.

PARTICIPANT [In Audience]: Yes. I wanted to ask a question on the intersection of your tox studies versus your potency studies. I think inherent in some of the tox discussions you're having here is that whatever animal model you use, there is some sort of immunological outcome that is reflective of the ability of the antigen to do something.

I found it interesting, though, that in the Adno [ph] case study those immuno outcomes were not used as a component of potency. In fact, the potency description sounded like more in vitro or more structural chemical.

I'm just wondering if you could comment on that.

And the other part of the question is, this inherent connection between the two would work well if, like the Adno, you can get an immune response in a model, like a mouse or something. But if you use some sort of other vaccine structure that doesn't permit that kind of flexibility, where can you go?

DR. LEDWITH: With regard to your first comment about the potency assay, the in vitro types of assays you

were talking about are our release assays. And the reason is that for a release assay you need to have something that's very quantitative, with a low standard deviation. And you generally won't have that in an animal study. So for a lot release, that's why these types of in vitro potency studies are done.

However, on comparable lots of material, immunogenicity studies in animals are carried out where we do have a dose response, so we know the expected dose response through a very wide range of doses. And there are also other types of characterization studies done on each lot that aren't necessarily the release tests, such as in vitro gene expression, or even some animal immunogenicity experiments. But because they're not as quantitative, they're not the so-called potency assay for release.

PARTICIPANT [In Audience]: So you don't use the immunogenicity as a release test?

DR. LEDWITH: No, not as a release test. It's more of a characterization study. It's not a quantitative release test.

PARTICIPANT [In Audience]: So for the rest of the panel, where you can use that, it seems a viable opportunity. But when you're using a vaccine construct where immunogenicity in a mouse or something is impossible-Because I remember one of the key components is that the toxicity is somewhat reflective of what could happen in people. What do you do if your structure or your vaccine-you know, animal model, doesn't really reflect that? What do you do then?

[No Response.]

PARTICIPANT [In Audience]: Do you understand the question?

DR. LEDWITH: I think you're asking if you don't have an animal model that elicits the immune response you're hoping to get in people? Is that--

PARTICIPANT [In Audience]: Yes.

DR. LEDWITH: That's basically the question?

PARTICIPANT [In Audience]: Yes, exactly, yes.

DR. LEDWITH: Yes, I personally haven't run into that problem. So maybe Francois or somebody might have--

DR. WARNER: We're talking about potency assay for release?

PARTICIPANT [In Audience]: No, sir. I was trying to--Basically, the question is, can you dissociate toxicity from immunopotency? Because it sounds like to do a tox study where immunogenicity of the vaccine is a key component, those two are inherently connected. But if you have a vaccine where the animal model isn't completely predictive of what will happen in a person--i.e., you won't generate the kind of immune response you hope to get in a person--what do you do then?

DR. WARNER: Well, Francois made the comment that it's very difficult to make that argument. And I don't know whether you want to address it. But I don't know whether you're going down the path of using homologues or animal models of different antigens.

But I agree with you. I have some examples where it has been very, I would say, impossible to use an animal model to mimic a human response. However, at that point, I suppose in a certain sense you sort of--I don't know, I don't want to say this trivially, but you throw in the

towel. And then you're stuck with doing a toxicity study, though, that does address intrinsic toxicity, contaminants.

I don't think that gets you out of doing a tox study, is my point. Because there are other issues. There are issues of contaminants. There are issues of intrinsic toxicity. So you're right, you may not have addressed the issue of the pharmacodynamic—or the toxicities associated with the pharmacodynamic response. But I would argue that that doesn't get you out of doing something to look at the other possible sources of toxicity.

DR. LEDWITH: Yes, I think another good example for that is the cancer vaccine I just touched on briefly, where in humans you will be possibly vaccinating with a self-human antigen. So again, we're concerned about immunological effects, autoimmune effects. But we're also worried about intrinsic toxicity.

So if we had a cancer vaccine program, I would want to test the actual human vaccine, cancer vaccine, in the animal models, to address the intrinsic toxicity concerns. But I'd also want to carry out a study with, for example, the Rhesus homologue of the self gene in Rhesus

monkeys, to address those other kinds of peculiar types of toxicity that could arise from long-term expression or autoimmunity, or things like that.

MR. : Which brings me to the next point, which was in those cases where you have a homologue, it brings us to the question of the use of transgenic animals for these kinds of studies.

DR. LEDWITH: Right.

MR. : And, you know, the agency's position on the use of such animals, and whether they're worth it, or not.

MR. : I would personally evaluate the transgenic model versus a homologous gene in an animal model very closely. Obviously, basically, the gene expression of that self-antigen in the two different models. Does the transgenic model really reflect the tissue distribution pattern of gene expression in humans? Or does the animal model using an homologous gene better reflect that? That might guide your choice there.

DR. WARNER: I wouldn't advocate using the animal homologue, though. The issue is related to whether it has

any relevance, in the quality of the material--There's a lot of issues there. Whether it's relevant at all. But I already have problems with most of my animal models, anyway, using the murine analogue or transgenic mouse.

The problem with doing tox studies sometimes is that it gives you false confidence, also. So I don't know, I have some issues with that, too.

MR. : Yes, I think it would be done in the context of an ancillary extra study, in addition to testing the actual test material.

DR. HARGUS: Go ahead.

MR. COPLIN [In Audience]: Paul Coplin [ph], from Merck.

To address the issue that was raised by the gentleman from the EPA as to how the cumulative exposure to alum has been assessed in the pediatric regimen, one of the ways that that has been looked at is in post-licensure studies of pediatric vaccines and adult vaccines.

Recently at Merck we did an evaluation of three vaccines that contained alum. One was a pediatric vaccine given at two, four, and 12 months. The other one was a

combination vaccine given at two, four, 12 to 15 months. And the third one was an adolescent-adult vaccine. And each of these studies contained 27,000, 42,000, and something like 60,000 doses.

And in each of these studies, we compared the duration following vaccination with a period of time before vaccination, and with historical controls who were vaccinated with a pediatric regimen without that added vaccine; to evaluate whether there was any increased rate of adverse events in the people who got the additional doses of alum-containing vaccines, compared to the period before they got any vaccines or historical controls.

And in all of those three cases, we found there was no increased risk of adverse events. And this report was submitted to CBER as part of a justification for using alum in a new vaccine. So that's one of the ways it has been looked at.

My question to the panel is how much the experience with existing vaccines, in terms of adjuvants, how much that safety experience from post-licensure studies would inform new vaccines going forward.

[No Response.]

MR. COPLIN [In Audience]: In terms of doing tox studies, whether the experience with adjuvants from existing vaccines and post-licensure safety studies would affect the level of toxicity studies that would have to be done for pre-phase I for new vaccines.

DR. GRUBER: Well, as far as adjuvant is concerned, there is only one which is licensed worldwide. It's aluminum. Otherwise, you have caron [ph] emulsion, which is licensed for flu vaccine in Italy. And you have the virasum [ph] intra-nasal flu, which has been withdrawn in Switzerland. And you still have a flu vaccine based on virasum. That's the only ones that are licensed. So post-licensing evaluation is kind of difficult on that standpoint.

DR. LEDWITH: But I think clinical data from--whatever--new adjuvants does influence our--

DR. GRUBER: Sure. But I mean, it's not millions of doses that are administered.

DR. LEDWITH: No, absolutely.

DR. GRUBER: So it's a process that has to be built on. But the studies that—Even if you have an adjuvant that has been used already a vaccine being developed, you use another antigen with the same adjuvant. You redo the tox package. I mean, it's first time in line for new antigen with a given adjuvant.

MR. COPLIN [In Audience]: Thanks.

MS. BURKE [In Audience]: This is Rae Lynn Burke [ph], from SRI International.

I wanted to ask a question about choice of animal model. I heard several people say when you were selecting animal models for systemic toxicity that you might not use rabbits because they were not sufficiently well characterized. I wanted to ask, what would be involved in having a "validated" animal model. And I also wanted to ask whether that choice would be different for biodistribution, versus systemic toxicity evaluations.

DR. WARNER: Well, we're using rabbits. We're generating historical database. We had some. There are issues, in my experience, with rabbit supplies and quality rabbits. You know, we so far haven't had an issue using

rabbits. We are actually using them with some other things, too. So all of a sudden we're getting down this rabbit path.

You know, I think it's a nice mesh with the issues of the reproductive toxicity because—I don't want to steal anybody's thunder, but placentation in rabbits is more similar to humans than the other species that we talked about. So we've sort of made a concerted effort to sort of stick with rabbits. We do our immunogenicity studies often in rabbits, if possible. And so if we do do that, we stay with rabbits.

But you talked about validation. We wouldn't validate an animal species for tox testing. We have validated methods and we have, you know--We do everything in a validated sense, but selection of tox species--I've got to admit, nobody was crazy about it when we started off down this path but, you know--

DR. LEDWITH: Yes, I think I meant a similar approach. By "validation," I meant we would want to generate sufficient historical control data before we embarked on a GLP safety study of a test compound.

And so we would probably want to do several different studies with control animals first, just to find out what the normal variation is and the hematological, serum biochemistry parameters, as well as organ weight variations, histological lesions, what's the incidence of them in control animals. So that we have an idea going into the study what would be an appropriate group size to use to control for those types of variations.

DR. WARNER: I mean, I think we are taking risks, honestly, because we don't have a big historical database within our own shop. But we're building our historical database.

MR. : But you do have a fair amount--I mean, from the repro-tox studies with rabbits. I mean, you do dose range finding studies for that. I mean, actually, rabbits--We know a lot more about rabbits than you might think from the discussion here.

DR. WARNER: That's true. At our main tox facility we do repro-tox in-house in rabbits. So everybody said, "Ah, you know, rabbits. Okay." Although that's not a full tox assessment typically.

MR. : I'd just like to add to what

Garvin said. You shouldn't think that rabbits are

precluded from tox studies. Most places that do any sort

of tox testing at all will use rabbits. It's a matter of

how much background information you have.

The other thing to consider about rabbits is, it's not quite as simple as doing a rodent study. They are larger. They're more expensive, from the standpoint of increased labor. Housing situations are much more expensive and complex. And so it becomes a matter of what the individual laboratory feels most comfortable with.

But again, echoing what Dr. Hastings says, we do have a lot of information on rabbits. Perhaps the only thing that would argue against them is a limited amount of immunological reagents compared with, for example, rodents.

MS. BURKE [In Audience]: And how about the question of biodistribution? What would you all generally choose as the best species?

DR. VERDIER: I can perhaps answer to this question. And Brian, feel free to answer, also.

Regarding biodistribution, you really collect biodistribution in two species. In the primate species, because if we are dealing with a GMO and a live virus I am used to doing at least one non-human primate study, and therefore I will get some biodistribution data from this study. And I also do, as I mentioned, a general biodistribution study in a small animal species, in order to have several necropsy time points, a large number of animals, and therefore a kinetic of the biodistribution. So at the end, I have rodent and primate data for biodistribution.

Brian, do you want to comment?

DR. LEDWITH: Yes. I think a very similar approach. We typically used mice, which was also one of our tox models. When we moved to doing Rhesus monkey toxicity studies, though, in the first several studies we did biodistribution there, because I think it's very important to have the biodistribution data in your toxicity model for at least a given vector class.

And for example, if we move to developing the rabbit as a tox model at Merck, I would do a

biodistribution study in rabbits, just so I'll be able to correlate it with any organ-specific toxicities.

DR. HARGUS: Okay, one last question, then we're going to break for lunch.

MS. BOYLE [In Audience]: Yes, this is Rosanne Boyle [ph]. I'm with the International AIDS Vaccine Initiative.

Continuing on the topic of biodistribution studies, earlier Dr. Verdier mentioned in his presentation an approach of characterizing the biodistribution and the integration of a vector without transgenes as a strategy, a primary strategy, and then following up with toxicity studies of the actual vaccine construct.

My question is, I'd like to see some comment from the regulators on the panel on this strategy. And I'd also like you to consider, and perhaps discuss, how we can come up with an algorithm or criteria for targeting potential integrants in vectors, since we are all faced with biodistribution and integration studies at this point in time. Thank you.

DR. MIDTHUN: Is Dr. Dennis Kleinman [ph] in the audience? Because he's our expert in DNA vaccines. If he'd please comment, I'd really appreciate it.

DR. KLEINMAN: Your question dealt with viral vectors, or with plasmid DNA vaccines?

MS. BOYLE [In Audience]: Either. Or address both, please.

DR. KLEINMAN: I have some expertise only in the one. I think one of the difficulties that this meeting has had is that we're trying to deal with a plethora of possible types of vaccines and lump them together. So I think that how we deal with the toxicity of a live viral vaccine, versus an attenuated live, versus a DNA vaccine, versus a protein sub-unit vaccine, perforce must be different.

I can tell you that the FDA approach to how we determine what types of toxicity and biodistribution and integration studies need to be done with DNA vaccines has evolved considerably since the first clinical trials were done back in 1995.

Originally, we felt that every new vaccine candidate needed thorough toxicity and biodistribution studies. We no longer believe that. We believe that if the backbone of the plasmid has been well characterized, that simply making moderate modifications—ones which would be unlikely to affect its biological activity—that we would no longer require additional such toxicity, biodistribution, and integration studies.

The same may be true for some of the live viral vectors. It's simply a matter of whether the agency has enough information, has accumulated a background, to make them appear to be well characterized. Until we have that background, I think that for the purposes of safety, we need to require that studies be done on each vector. But once we have that background--perhaps multiple examples from the same sponsor, or single examples from different sponsors--I think that we're far more willing to entertain a less rigorous toxicology study.

MS. BOYLE [In Audience]: Could you comment on the issue of targeting in the backbone, or characterizing the backbone, as it relates to potential integrants?

DR. KLEINMAN: There are some wonderful studies, actually done by the folks at Merck, showing that the likelihood of an integration event being influenced by the insert is really quite low. That is, even if you have homologous sequences, the likelihood of integration does not rise considerably. So solely from the standpoint of integration, if you don't change the backbone considerably, it is unlikely that the insert will dramatically change.

Now, what will change that is if you use a different type of delivery vehicle. If you electroporeate, for example, or introduce some tolyposomes [ph], or if you change the nature of the live viral vector itself so that it's more infectious, that will dramatically change.

So we have to keep an eye on that, which is why I think that members of the panel repeatedly point out that some of these things do need to be handled on a case-by-case basis.

DR. HARGUS: Okay, thank you. Right now we're going to break for lunch. Lunch is in the Potomac Room in the main hotel, on the upper level.

And then we'll be back here when lunch is finished. And I'd like to thank our speakers, our panelists, and all of you, for participating.

[Applause.]

DR. GRUBER: We've got to be back here at 1:15.

[Whereupon, the workshop recessed for lunch, to reconvene at 1:15 p.m., that same day.]

DR. HOUSE: We'd like to welcome everyone back to this afternoon's session. One thing that has been suggested that we'd like to do is just to give you an introduction to the folks up here on the panel, because I guess the name tags are a little hard to read. So we'll just go down the line briefly, before starting our session this afternoon.

I'm Robert House, director of preclinical studies at DynPort Vaccine, in Frederick, Maryland.

DR. VERDIER: I'm Francois Verdier, Aventis
Pasteur, in charge of non-clinical safety.

DR. GRUBER: My name is Marion Gruber, with the Office of Vaccines, at the U.S. FDA.

DR. MIDTHUN: Karen Midthun, Office of Vaccines, FDA.

DR. SUTKOWSKI: Elizabeth Sutkowski, Office of Vaccines, FDA.

DR. GARCON: Natalie Garcon, GlaxoSmithKline, Biologicals, Vaccine Formulation Technologies.

DR. HARGUS: Sally Hargus, pharm-tox reviewer, Office of Vaccines.

DR. LEDWITH: Brian Ledwith, Director of Biologic Safety Assessment, Merck.

DR. LUSTER: Mike Luster, National Institute for Occupational Safety and Health.

DR. LAMBERT: I'm Paul Lambert, from the University of Geneva.

DR. WARNER: Garvin Warner, Drug Safety Metabolism, Wyeth.

DR. HOUSE: Okay. We'd like to start this afternoon's session continuing the theme of animal models and safety assessment. Our first speaker this afternoon is Dr. Mike Luster.

Mike Luster is currently chief of the Toxicology and Molecular Biology Branch at the National Institute for Occupational Safety and Health at CDC.

Prior to moving there in 1996, he worked for many years at the National Institute of Environmental Health Sciences, where he was head of immunotoxicology and neurotoxicology sections.

He has published extensively in the field of immunotoxicology. And it is a personal pleasure for me to introduce him, because Mike was instrumental in teaching me what little I know about immunotoxicology. Mike?

ANIMAL MODELS APPROPRIATE FOR ASSESSING IMMUNOTOXICOLOGY AND IMMUNOPATHOLOGY

TOXICOLOGY & MOLECULAR BIOLOGY BRANCH, NIOSH, CDC

DR. LUSTER: Thanks, Robert.

PRESENTER: MICHAEL LUSTER, CHIEF,

I was asked to provide a brief overview of the immunotoxicology tests that have been either validated or are undergoing validation, or maybe even have been thought about.

Regarding hypersensitivity, some of the old assays, the mouse ear swelling test, which hasn't been used to a large extent--I saw Shane Gadd [ph] in the audience. He's actually the person that first developed that assay. Sorry, Shane.

The guinea pig tests have been used for many years; guinea pig maximization test and the [inaudible] occluded patch test. But more recently, that's been

replaced by the local lymph node assay. And if the drug allows it, or the chemical allows it, patch tests in humans are conducted. That's of course before [inaudible].

The reason why the local lymph node assays gained popularity isn't so much that it's more sensitive than the guinea pig assays, but it involves the three "Rs," in replacement, refinement, and reduction of experimental animals.

And this is some data by the peer review panel from ICVAM at NIHS that was published a couple of years ago, showing the concordance between the guinea pig assay and the local lymph node assay. And as you can see, it's pretty similar, compared to the guinea pig maximization test and the Buehler, or any guinea pig test.

And then when you compared the local lymph node assay to humans, the concordance is also very similar: around 72 percent. It's not the greatest concordance analysis, but it is equivalent to the guinea pig assay, which also shows, as you can see, concordance in the 70-percent range.

This is how the local lymph node assays run, for those of you who are unfamiliar with it. It's very simple. The test material is applied to the ear for three consecutive days. And then on day five, the animals are administered tritiated Thymidine. On day six, the draining lymph node is removed, and a cell suspension is prepared. And Thymidine incorporation is determined as an indicator for lymphocyte proliferation.

Keep in mind, it's a screening test. It's going to measure immune activation for almost anything, so including vaccines; not necessarily a chemical that's hypersensitized.

Regarding autoimmunity, there's been a lot of attempts in trying to develop the appropriate models for assessing the autoimmune disease, since there's so much evidence of drug-induced autoimmune phenomena; without a whole lot of success.

Currently, there is a validation--an interlaboratory effort going on using the popliteal lymph node assay. And in this process they changed the original protocol. Instead of injecting the test material into the

foot node, they're injecting it subcutaneously into the back. But the assay is about the same. It's allowed to enter the draining lymph node, although lymphocytes enter the draining lymph node, and the draining lymph node is removed and measured. And in this case, it's just simply swelling.

And in a sense, in this case it really measures very much the same thing as the local lymph node assay would do. It's measuring immune activation. Because the cells that are increasing in the lymph node are T cells or B cells, usually.

There's been a little bit more efforts going on with using the popliteal lymph node assay in conjunction with reporter antigens. And I'll describe that in a minute.

And there's been work done with autoantibody quantitation for chemicals; quite often, anti-DNA antibodies. Someone mentioned that earlier. But it hasn't been an assay that seems to be very validated or reproducible for drug-induced autoimmune diseases.

There were some efforts a number of years ago in immunopathology. In this case, what was looked at after a chemical or drug was administered was immune complexes in various organ systems. And this seemed like a very good idea, except that from the pathologist's point of view it was an extensive amount of work; since it wasn't clear in what target organ the autoimmune phenomenon would occur. So they would have to almost isolate all, and examine every organ for immune complexes.

There's been work done with genetically or experimentally induced animal models. So for example, for systemic types of autoimmune diseases, some work has been done with the NZB mouse. And for organ-specific autoimmune disease there is some work going on, some of it at Virginia Commonwealth University, with the Nod [ph] mice which developed Type 2 diabetes.

In this case, what's looked for is whether the drug or chemical is going to enhance the development of the autoimmune disease; either make it more severe in the animals, or decrease the time that the autoimmune phenomenon will occur in those animals.

The problems with autoimmune diseases is that it's not just one disease. As you can see from this table, it almost affects every organ system found. There's a lot of epigenetic and genetic factors involved. It's predominant in females, as well. So it's been very hard to develop a model. In fact, genetic factors play a major role in all immune disease. HLA is very strong.

So not much success in having a validated model for testing whether an agent is going to produce autoimmune phenomenon.

The most interesting work has been done by Albers, in which he's used that popliteal lymph node assay in conjunction with reporter antigens. The list of chemicals here, or drugs here, are all agents which have been shown to induce some form of drug-induced autoimmune disease.

And what's done here is that the drug is injected at the same time as antigen, either TNP-Ficoll as a T-independent antigen, or TNP-Ovalbumin as a T-dependent antigen. And the immune response to the TNP-Ovalbumin or Ficoll is measured.

Now, the antigen is administered in the absence of any adjuvant. So without the adjuvant, it's not going to produce an immune response. What this is really saying is, since you are getting antibodies, particularly if you know with the TNP-Ovalbumin, it is that the material here is acting as an adjuvant.

Regarding immunosuppression, this was what used to be done about eight or nine years ago. It was more of a tier type of testing. The tests in tier one are more simplistic types of tests; and then when you get into tier two, they are more functional tests, where the animals are challenged with antigens or infectious disease models. NTP was doing these, as well as the group in [inaudible] RIVM.

And then about nine years ago, we had a sufficiently large database with those chemicals that went through this extensive tier--we had about 50 chemicals at three dose levels--that we thought we could answer some questions.

And two questions we wanted to ask were whether we needed to run all the tests in that panel, or if we could reduce the number of tests; and also, what the

relationship between those immune changes and host resistance tests were, as well, whether it followed a quantitative relationship, whether it was a linear or threshold relationship.

And this has been shown many times before, so I won't dwell on it. But this simply shows that if you run any of three different types of tests, you can get 100-percent concordance. In other words, you can accurately predict immunotoxicity. And in fact, if you use antibody response as a surface microanalysis, along with several other tests, you get high 90-percent concordance.

So what it says is you only needed to really run a couple of immune tests to be able to look at immunotoxicity. But two of them that were key were antibody response and some surface microanalysis.

And we also tried to look at relationships between immune functions and host resistance, asking the question of whether the relationship was of a linear model or threshold; meaning, was there some reserve in the immune system?

And this is just one set of type of analysis that was conducted, where we set up all of the chemicals. And on the "X" axis we have changes in antibody response; and on the "Y" axis we're showing changes in the Listeria mortality. And each number represents, for example, a dose. And there's 50 chemicals, so it's probably about 150 numbers here. I'm just showing it as an example.

And then we did statistical modeling with that type of analysis. And we showed with the three host resistant assays that were used in many of these tests that many of the relationships between the immune function and the host resistance were of a linear nature, not a threshold relationship nature; although some were still threshold.

So it said that as immune function changes, then disease—It seems kind of obvious; but that disease will also increase in a linear fashion.

Several years ago, the question came up of whether we can do an extended immunopathology and identify whether a chemical is immunotoxic, in the absence of immunizing the animal with an antigen. What we did then

was to gather four pathologists together. One was from my agency at NIOSH; one from NIHS; one from Dow; and the person that really set up the study was Frika Cooper [ph] from RIVM. And the pathologists agreed to measure these 13 or 14 different histological parameters, which would represent the "state of the art" immunopathology, histopathology screen for immune changes.

I would indicate that this is the preliminary data. The analysis still hasn't been completed after about a year. But the way the data looks like, as shown here, we ran 13 different chemicals that were examined. And what is just shown here is the antibody response, either in control animals or animals treated with the agent at a low dose, medium dose, or a high dose; and then compare that to the pathology.

And I just summarized all that pathology, consolidated into just a plus or a minus. Either the immunopathologists would say there were significant defects with that screen to say that there's something going on immunologically, or there wasn't. Then the comparisons are going to be made. Although there's a lot more analysis

that really needs to be conducted, but this is probably the summary of it.

So with the first five chemicals, you see that we've got no changes. These were negative controls. You see there's no change in antibody responses. And the pathology picked it up pretty well as well with no changes.

Oxymetholone, we saw no changes with antibody responses, but a change with pathology. What turned out was that Oxymetholone affected T cell responses, CTL and DHR. So this is a chemical that we would have missed using an antibody response, that immunopathology would pick up.

The other six chemicals were all shown to affect the antibody response, as indicated by "D" for decrease in antibody responses. And of those six, three of them were picked up by an immunopathology screen, and three were not picked up by the immunopathology screen. So that's where that status stands. And I guess you can call that reasonable concordance, that the immunopathology is going to pick up at least half of the causatives.

The reason, probably, for the lack of the pathology picking up those other three chemicals is that we

weren't stimulating the immune response. And that's shown here. That figure on the right-hand side is a follicle with a germinal center. And although those will be present in normal animals that are not injected with anything, they are very sporadic; while after immunization these are very large and easily can be observed.

And I guess the argument would be that if these were being measured by immunopathologists following a constant stimulus, that the pathologist would be able to pick that up if there was immune change occurring.

The data has several implications, as far as testing for immunotoxicity for vaccines, and this is shown here. This is some data that Kimbal White [ph] had given me a while back, in which animals were set up into either two different groups or the same group. And in the different group mouse, the same mice were used to measure antibody responses at NK cell activity and—Excuse me, different groups of mice were used to measure antibody responses at NK cell activity.

In the same group mice, we used the same mice to measure both antibody responses after immunization and NK

cell activity. And as you can see here, there is a decrease in the NK cell response. And what it turns out was that the NK cell activity overall is normal in those animals, but as a result of the lymphocyte redistribution due to the fact that there are large numbers of germinal centers occurring, it's a misread.

So after vaccination, if we use animals in our studies and we take the spleen, which is the common organ used for most immunotoxicity studies, one would expect to see a redistribution. So flow cytometric analysis, or NK cell assays which look at spleen cells for NK activity, will show an altered distribution without really being functionally changed.

The other issue that can affect immunotoxicology studies with vaccination is the old--I'm sure many of you are more familiar with this than I am--is antigenic competition. And that's been around for many, many years.

And the original argument about antigenic competition occurred from vaccines that had multiple serotypes. And what that said, as shown in the first third here, was that if you vaccinate with an antigen that

contains multiple serotypes, the immune response to the three serotypes—shown here as "A" prime, double prime, triple prime—will not be as strong as if you immunized individually.

And there's another issue of antigenic competition—similar, but a little different—in which there are subdominant or cryptic epitopes. And in this case, the argument is that if you immunize an individual with an antigen that has both a dominant and a subdominant epitope, that the subdominant epitope may not be expressed. If you immunize with both at the same time, then both of them would be expressed.

The one that applies mostly to immunotoxicology studies is the interference model, which states that if you are under an active immunization—as in the case of "A" from the vaccine, which is a very good epitope and a very good antigen—that a subsequent immunization with another antigen that's not as strong will give an inferior response.

And the reason for that is not quite clear yet; but seems to be the fact that there are certain limited

numbers of dendritic cells and cytokines within the spleen that will allow for a normal immune response, and that those dendritic cells and cytokines are all being used by the high-affinity, high-avidity antigen from the vaccine that we've shown here.

So for example, this is a typical beginning of a germinal center in the center here. The yellow cell with the squiggles is a dendritic cell. The little red dots in it are the antigen. And what happens is, antigen-specific T cells will interact with the dendritic cells, and then the B cells react with the T cells. And over a period of time, a germinal center forms, gets very large. The better the antigen, the larger that follicle is, the one that I showed you earlier.

And there is only so much of that that can occur at a particular time. So hence, vaccines by nature are going to be temporal immunosuppressants, because they're competing—they're taking over the ability for making antigens, which will complicate your interpretation of any studies.

So just as something that maybe you want to be discussing later: issues regarding immunotoxicity testing of vaccines. I don't think any of the traditional methods that we used for immunotoxicity testing will really apply to vaccines.

The local lymph node assay, which is right now the current key assay for measuring sensitizers. The popliteal lymph node assay which is being used, although not validated, for autoimmune diseases, really measures immune activation, which is what vaccines are going to do anyway.

And regarding immunosuppression, vaccines by nature are temporal immunosuppressants for other antigens. So any time one is undergoing a vaccine, one is presumably going to show some temporal type of immunosuppression.

I think there are some specific questions that might be addressed within that particular framework. So for example, if one is looking at a particular agent within a mixture for an adjuvant, like a preservative, then the local lymph node assay or even the PLNA assay might apply. Bimaerosol [ph] was picked up by these standard assays,

which was used as a preservative for vaccines. But by and large, I don't think one shoe will fit all. So I'm not sure how well these are going to apply. Okay.

[Applause.]

DR. HOUSE: I'd like to open up the floor to questions.

PARTICIPANT [In Audience]: Mike, I was interested in the concept of temporal immunosuppressant. Generally, for immunotoxicology we think of immunosuppression as being synonymous. And from the context of looking at vaccines, I think we realize it's much more complicated.

Based on your concept of temporal immunosuppressant, would you think that this argues for looking for immunosuppression as a consequence of vaccination? Or would you have a different approach?

DR. LUSTER: Yes, by definition that is, I guess, immunotoxicology, right? It's causing immunosuppression, even though it may not be long term, and it is part of that vaccine response.

I guess the question I would have as a toxicologist would be, is that maybe still a research mode? How severe is immunosuppression occurring after a vaccine? How long does it last? Do we have a window where we're more likely to develop infections after a vaccination occurring? And if so, then I think that obviously the health benefits of vaccine are going to outweigh that, but at least that's the type of information I think that would be quite useful to have out in the clinics.

So for example, if I was going into the hospital for a week and was going to be vaccinated, well, a physician may decide that the best thing to do would be to vaccinate me on my way out, rather than on my way in. It may be just be that simple a question.

But I think everyone knows that vaccinations are temporal immunosuppressants, but I don't think anyone has really quantitated or studied it. So I think it's a research mode question.

PARTICIPANT [In Audience]: Is there any epidemiologic data that says that that's an issue in clinic?

DR. LUSTER: Not that I know of. But regarding issues with immunosuppression, the only way to answer that question is to have a pre-designed epidemiological study. So if someone comes out and if there is a higher incidence of influenza by 5 percent in the population after vaccines, that's not going to ever be picked up. So one would have to go off and design that epidemiological study.

So that's why I don't even think it's something that would—I think it would be, again, more of an experimental research issue at this point. And it may be in fact that the effect will last three days, and you'll see a little 10-percent drop in immune tests and you go, "Well, gee, that's really not anything to be concerned about." But on the other hand, you may see a larger effect. I mean, I just don't know.

But I think it's real. As a toxicologist, I think it's something that is in my mind as a question that might need to be addressed.

PARTICIPANT [In Audience]: Maybe I can ask you, and we have had the discussion years ago about the Dipth-3 Pertussis Tetanus, in combination with [inaudible]

Influenza-B vaccine. And there was some type of interference that requested of [inaudible] to the medicine board in The Netherlands to do requests to separate the injections in children with 14 days. It was not practical, because that led to every 14 days visits of the children to the physician. But there was some epidemiological, or some evidence for interference of this type.

But I would ask Mike, what is your recommendation, from your immunotox viewpoint, for the selection of animals in the testing of vaccines? We've had earlier discussions on what is the most relevant model. Should it be the fact that we have a lot of data on the rat or the mouse on immunotoxicity and immune responses to characterize the vaccine response? Or should it be the most relevant, the most important, factor the fact that the animal is sensitive to the disease that the vaccine is focused on?

DR. LUSTER: Well, I guess it's kind of easy, because I wouldn't think that it would be a very good idea to be doing real testing for vaccines for immunotoxicity, from what I can see out there. Because I think that the

results that might come about would be very difficult to interpret. And I think both FDA and the drug companies would be banging their heads, why they did it.

But I think in certain instances--For example, if one wants to test material within an adjuvant or another preservative, and one wants to go off and do hypersensitivity testing or autoimmunity testing, then one can run those straightforward local lymph node assays. And that's been done, is validated in the mouse. So hence, you can continue that in the mouse.

As far as the immunosuppression part is concerned, the functional tests have been validated, both in the mouse and rats. And to answer those specific questions of how much immunosuppression does a vaccine really cause, if the FDA feels that's an important question to ask, then really the only model they could do it in is mice and rats, because those are the only models that are validated and tested, where we now then have that information.

DR. HOUSE: Next question?

MR. BARKER [In Audience]: Lou Barker, Sequella.

There are human diseases where immunopathology plays a fairly prominent role, in diseases for which we use vaccines. And I'm not sure if this area was covered by your immunotoxicology presentation. I'm actually thinking particularly about immunopathology caused by cell-mediated immune responses.

But in any case, to take it a little further, and similar to the last question, I just wonder--and maybe you've already discounted this approach--but whether one would hope to discover these problems in advance with animal test systems which may not very closely mimic the human diseases in terms of immunopathogenesis. Could you comment on that a little bit?

DR. LUSTER: I'm not sure I quite understand the question. But the vaccine itself will induce--Well, I mean, you mentioned it almost like immunopathology, but I think it's an immune response that's occurring.

MR. BARKER [In Audience]: Yes.

DR. LUSTER: And you're asking whether that could be used as a measure?

MR. BARKER [In Audience]: No, the question is really about what happens when a wild type virus, or bacteria or whatever it is, appears. In other words, you'd have to have a challenge in order to see the kind of immunopathology I'm talking about; not immunopathology caused by the vaccine, per se, but caused by the natural infection in a vaccinated individual or animal.

DR. LUSTER: Well, like I said, [inaudible] or influenza virus infection?

MR. BARKER [In Audience]: There are lots of examples.

DR. LUSTER: Yes. I'm not sure how to answer that. But can that be used, can immunopathology be used as a measure for a drug's efficacy against that? And the answer would be, yes, of course. I mean, if that's the question. But I'm not sure I'm answering your question entirely.

DR. GARCON: Yes, is one of the examples you're talking about what happened with the RSV vaccine?

[Response Inaudible.]

DR. GARCON: Yes. So in that case, there is a model that has been developed in [inaudible] rats with the RSV infection, where actually you reproduce in [inaudible] rats the same pathology in the lung. And that model has been used by us and others to see how to develop vaccines, again RSV. So if that's what you're talking about, that can be done, but you need the animal model for that.

DR. GRUBER: We were discussing here among us the difficulties in really being able to address this particular phenomenon of immunosuppression in animal models; that I guess the availability of animal models to look at these questions is probably very scarce.

And when I looked at the questions raised regarding immunopathology, or immunotoxicology, I was thinking actually of a perhaps much more simplistic, or let's say naive, approach. That is, looking at the toxicology study really as a signal-generating mechanism that is--Granted, many times our concerns with regard to immunopathology may be theoretical. So that you build in your toxicity study really a battery of tests, sort of as a first-tier approach to assess immunopathologies by just

looking at the organs such as thymus and spleen and so forth and so on, looking at organ weights, and run really the basic parameters of assays.

Then if you see something, you then do additional studies to look at mechanisms of effects. And then at that point, you may have to look at the feasibility of developing animal models to address the specific question. But I think, as part of your basic toxicology package, looking at the potential for immunopathology may need to be much more basic, so that you don't really chase a wild goose.

Millie [ph], do you have anything to add to that?

PARTICIPANT [In Audience]: Well, it's right on
there, though. I had a question, and I wanted Mike to
answer it, because I'm confused about this.

Certainly, if we looked at a gross level for organ weights, one of them you would weigh would be the thymus. And yet, during pregnancy in mammals, the thymus involutes. And some people say that at least in mice it remains functional, even though there's maybe up to a 70-percent reduction in size.

And I was wondering if we have to have a special concern because of that change in weight, potentially in function. And I don't think it's really worked out, but I might be behind in the literature on that. Mike, could you address that?

And I was thinking about the involution of the thymus, the smaller size, which would mark it as immunosuppression; and yet, that's normal for pregnancy.

And then you give a vaccine, and get additional immunosuppression. And we're not sure what it means in the animal models. But do you have any concern for humans?

DR. LUSTER: Well, actually, no, just as a point of information, I thought during pregnancy the thymus involutes because of estrogen and progesterone increases.

PARTICIPANT [In Audience]: Right. Yes.

DR. LUSTER: And that is thymal suppressive, or whatever.

PARTICIPANT [In Audience]: Yes, it's supposed to.

DR. LUSTER: My argument only is that, rather than doing just immunopathology because we have a

pathologist and we can do immunopathology, I think one needs to understand what the ramifications of that response would be. And I guess I have a hard time understanding--I'm not sure the thymus is going to enlarge because of immune response. It's a primary organ. The secondary organs are the lymph nodes and spleen, which are the ones where the immune response occurs. So those are the ones that are enlarged.

And when that enlarges, that will likely enlarge after the vaccine. And to ask whether the chemical has increased immunostimulatory activity, non-specific immunostimulatory activity that caused the enlargement, or are the germinal standards or the size of the spleen not as large as they should be after a vaccine, and therefore there are some materials in the vaccine formula that are immunosuppressant, I mean, I don't think you can--You can't really address that from a pathology standpoint, I think.

PARTICIPANT [In Audience]: No. What I was really bringing up was that it is normal for a thymus to involute and become smaller. And if they were looking

against non-pregnant controls, it could be mistakenly looked at as an immunosuppressant effect in a tox study.

DR. LUSTER: True.

PARTICIPANT [In Audience]: And, yes, the secondary organs would be those affected. But I wondered if there was any functional—as the result of the thymus involution and the changes you get during pregnancy, if we needed any special concern, or if there was any data that showed that we did?

DR. LUSTER: Yes, the answer is I think, yes, I think there is old data that suggests that during pregnancy that the pregnant dams have a decreased immune response. Whether that's due directly to a decrease in the thymic weights, or the fact that there's estrogens around that are generally immunosuppressive and block immune responses that are occurring in secondary organs, I'm not sure, you know, if anyone has ever really quite looked at that.

PARTICIPANT [In Audience]: I didn't see anything, either.

DR. LUSTER: But I guess the only argument would be that the thymus involutes normally after a certain age

at very young age, anyway. And immune responses look fairly normal for a long period of time, even though that thymus is starting to shrink up, if that helps answer your question.

PARTICIPANT [In Audience]: Don't know.

PARTICIPANT [In Audience]: The other side of the coin, there was an interesting paper a couple of years ago from Bonnie Graham [ph] in Nashville. And they immunized mice with Pertussis, the A-cellular Pertussis vaccine. And they found a high circulating level of IL-4, which wasn't novel. But then when they infected the animals with RSV, they had a much more serious pathology.

And we've also done some studies with Pertussis where we see increased allergic sensitization. So there's one argument saying that you can see immunosuppression, but temporarily you may also see a hypersensitization to other antigens. And I wonder if the committee maybe can consider that, as well?

DR. LAMBERT: Yes, in fact, I would like to challenge this whole business of immunosuppression with vaccination. I think that if we look at the data that we

have from human studies, not the mouse, we have the only evidence of immunosuppression has been with some live virus immunization. And very likely, the measles vaccine is inducing an immunosuppression for a short time. And we know the mechanism, that this is a direct effect on the cells.

But if you look at subunit vaccine, I think that we do not have one evidence that giving subunit vaccine in a child, you know, combining several subunit vaccines--I speak about protein vaccine--and if you give them at different sites, you don't see any effect on the response.

When you see some decrease of a response, as has been mentioned with the HIV vaccine, it was when it was given all together in one site. And there you can have interferences and competition at one lymph node site, probably. But I would not call that general immunosuppression.

And when you speak about changing the charge from TH1 to TH2, or TH2 to TH1, I think that this has not been seen in humans. In mice it's true that you can have such effect. In humans, in fact, you have very little general

effect of vaccines on the type of response which is developed at another site.

PARTICIPANT [In Audience]: Does anybody else have any experience with changes in lymphoid organs? I mean, Brian you mentioned you had changes in--what, liver?

DR. LEDWITH: Well, no, the typical reactions we would see with the vaccine are enlargement of the draining lymph nodes from the injection site, which is totally expected.

PARTICIPANT [In Audience]: Right.

DR. LEDWITH: There's only one study at very high doses that we saw some minor liver lesions.

PARTICIPANT [In Audience]: Yes. I mean, but some of those are expected. I mean, if we're using a strong adjuvant, I would expect non-specific stimulation. You mentioned that.

DR. LEDWITH: Yes. And we do see that in a traditional vaccine. With the Alum-adjuvanted vaccine you see the same type of lymph node enlargement.

PARTICIPANT [In Audience]: Right. But I wouldn't see that as triggering a need to follow up in

terms of immunotox. Even though in the conventional drug program, that might.

DR. LEDWITH: Yes. Absolutely not. Yes. It's the expected immune response.

PARTICIPANT [In Audience]: Right.

DR. LEDWITH: Right.

PARTICIPANT [In Audience]: I should also just mention, depending on the strength of the adjuvant--I mentioned liver--we do see changes in the liver, too: hypertrophy, perhaps an acute phase response in response to that strong non-specific stimulus, and changes in fibrinogen and "A" to "G" ratios, and things like that. But again, I think those are anticipated, given the strength of that non-specific immune stimulus.

DR. HOUSE: Next question?

PARTICIPANT [In Audience]: Summarizing this whole discussion, I was wondering, in the new draft guidelines that CBER is working for vaccines, if there is any mention of the tests and assays that Dr. Luster just suggested? Or if it's going to be something similar to the FDA guidelines that just came out for non-biologics?

DR. HARGUS: I guess I can't really say just yet.

I guess we had hoped to get feedback today. And perhaps
we'll have to discuss it some more. I am not sure what
we'll have in the guidelines about that topic just yet.

PARTICIPANT [In Audience]: May I add at this question?

DR. HOUSE: Yes.

PARTICIPANT [In Audience]: As far as we have discussed in Europe, and also in other areas, I think that in measuring the immunotoxicity or the immune response, as given in an overview by Mike, it has more the purpose to characterize the immune response than to decide whether or not there's immune suppression or immune toxicity. I think that's not the approach that I have in mind when applying this type of thinking.

I think that when, from a European point of view, we request for characterizing the immune response in all the detail, as also described in our repeated-dose guidelines on immunotoxicity, it's more related to what's happening after a vaccine. And maybe members of the panel can comment on that.

DR. LUSTER: I mean, that's what I was trying to say, as well as that I think the immunotox assays that have been out there and validated are doing what they're supposed to do. They detect immune changes up and down. And the idea of testing a vaccine and putting that into that is probably pretty dangerous. But it probably does have some applications in certain instances.

So for example, if there is a particular material within a vaccine that you would like to test as a potential sensitizer, I think those immunotox assays would be really appropriate. But to put the whole adjuvant in, I mean, it's guaranteed it's positive if we can get to the draining lymph node. You may have to inject it, but, I mean, it's going to be positive. It's going to be positive in the popliteal lymph node assay, because it's doing what it's supposed to do.

DR. HOUSE: One additional question before the next speaker.

MR. RITCHEY [In Audience]: Hi. This is Tom Ritchey [ph], from the Naval Medical Research Center.

We just came from a meeting which considered in large part the development of malaria vaccines. And there was a report on a phase I study of a long synthetic peptide which was a malarial antigen given either, I guess, in aluminum hydroxide or in mimontinide [ph]. And they had the problem of contralateral arm reaction. When a second or third dose was given in the other arm, there was a reaction in the site of previous inoculation which developed soreness and swelling a couple of days—it was delayed—following a new immunization in the other arm.

And during the discussion, it became clear that this has happened with a number of different malaria vaccines involving peptides. And in some cases, it's been more of an immediate type reaction, with the other arm beginning to hurt within minutes of the new injection. And actually, this has led to the cessation of developing a particular product.

This is obviously of concern. And I'm just wondering, from the point of view of looking at animal models, this idea of having to immunize in a different

location with a second shot in order to pick up the reaction, how can animal models--

[Tape Change.]

3В

DR. LUSTER: Well, let's see. So generally-Let's see, I'm trying to think. Not necessarily every
time, but most of the time we do inject in multiple sites;
rotate sites. So that if that were to happen and if the
animal models--This is due to antigen persistence. It
sounds like it probably is.

Again, that should have been picked up. I'm curious to know whether in those non-clinical studies--how they were done, and whether or not they used multiple sites or not.

MR. RITCHEY [In Audience]: Yes, I don't know, unfortunately.

DR. LUSTER: Yes. Because we will score both sites, you know; pay very careful attention to sites. And I don't have an example of where that occurred. I can tell you, when I used to immunize bunnies to make anti-mouse IG with Freund's complete and Freund's incomplete, I used to

get it there, where the other sites, the previous sites, would flare up when I dosed again the next time.

MR. RITCHEY [In Audience]: Thank you.

DR. GRUBER: Yes. In order to generate guidance, we need some answers to some questions. And if we are worried about the potential for immunopathology and immunotoxicology induced by immunization with a vaccine antigen, then I think we need to really spend a couple of minutes discussing how we really incorporate potential assessments or the assessment of potential parameters in our basic toxicity package to somehow address that; not really to specifically search for it, but sort of to build in some basic parameters looking at, if you want [inaudible], collectivization of the immune response.

And what we had discussed at the agency was really looking at basic parameters, such as looking at organs; looking at bone marrow smears; looking at blood cells, lymphocytes, the induction of antibodies; sort of in an attempt to have some signal generating tool.

If this is not sufficient, or if this is totally off line, or if this will never answer the question, I

think we need some input here in order to really generate guidance that is feasible. From what I am hearing here, it is that we have some assays which we could apply if there is reason to believe that a vaccine may induce hypersensitivity reactions beyond what could be considered biological plausibility if you immunize with something with an adjuvant that would induce some sort of reaction that you could explain away with the adjuvant without being concerned about a real immunotoxic response.

But I think we need something, some information, from the panel or from the audience, and to hear your thoughts on that.

DR. VERDIER: I can perhaps bring some data to your question. It's true that during general toxicology studies that we are doing for vaccines we have already some parameters which evaluate the immune system. We have the white blood count; we have the bone marrow; we have lymphoid tissue histopathological examination. And sometimes with these examinations we are able to pick up changes.

Are they relevant or not? We can then further answer to this question by additional studies. But it's true that I have in mind some studies with decreasing white blood cell count. I have also in mind studies with changes in lymphoid organs.

And I think that's the first tier. And we cannot speak about immunosuppression or hypersensibility. We just can say that there is an effect on the immune system of the animal which is not only the immune response triggered by the vaccine. That's something else, or that's something which is associated with immune response which is not directly the immune response.

Then with other vaccines--and Natalie was mentioning the RSV vaccine--I think a potential adverse effect, immunopathological effect, should be addressed by specific tests, for the RSV vaccine, for cell-mediated immunity. Perhaps in this case--it's really on a case-by-case, depending on the history about the disease--you should design another test. But I think we will not be able to list all these potential additional tests in a guideline.

I have in mind the RSV issue. We know also that we have this antibody-dependent enhancement. Could it happen with HIV vaccine? Could it happen with Dengue vaccine? We cannot generalize this question to all types of vaccines.

And regarding hypersensitivity, I will address this issue in the last talk. I think it's mainly an issue perhaps for excipients and adjuvants, and not perhaps for the antigen itself.

DR. LUSTER: And if I can add something, too, I think, trying to address the FDA question, I guess the first question I would ask is, if I'm worried about immunological effects, is it autoimmunity, hypersensitivity, or immunosuppression? And try to direct it that way. So again, as Francois says, it's a case-by-case study.

But if there is an issue, for example, with a vaccine that you fear might induce an autoimmune response, I mean, there are assays out there. There's just nothing that is guaranteed that's going to work, or validated. So for example, if you wanted to go back to the company and

ask the immunopathologists to examine immune complexes on potential target organs, I mean, that could be done.

There's just no evidence of how successful you're going to be on that. But it's probably the best that we could probably do at this time.

And I'm not sure there's anything you could do beforehand on that as a standard screening assay for picking up these types of effects of vaccines.

PARTICIPANT [In Audience]: Speaking as someone who works on AIDS vaccine development, where our problem has really been getting things to have the activity or the immune response in humans at all, when they have excellent responses in mice, we would really not like to see the FDA go overboard in asking us to do some studies in a small-animal system, where much greater immunogenicity is shown than we expect to get in humans, just to get into phase I; especially when the speaker even admitted that there is very little evidence from clinical studies that there is any clinical relevance to the immune suppression that he sees in mouse model systems in vaccines that do work.

PARTICIPANT [In Audience]: I don't know if there are any people who work with flow cytometry here. But is there an application for flow cytometry to the various animal studies as part of the tox package, to see whether those cell surface indicators of various subsets would give us some kind of a profile that we might be able to use to sort out more of what is seen in the immunopathology?

DR. GRUBER: I just wanted to clarify that I didn't mean to suggest any special studies right offhand in looking at the potential for immunopathology. My point was that in your basic toxicity package what you pretty much want is, you look for your basic parameters. And then if there is some signal, then you go on and see how to best address it by employing special studies.

I really believe that this is a difficult issue. And I really don't--I mean, personally, I wouldn't want to suggest in a guidance document that you have to run "X-Y-Z" studies to search for the potential for immunopathologies, other than doing--that's what I'm trying to get at--the basic package. What is required? What is feasible? What can we ask for?

You know, so that is going to be addressing our concerns. But it's not going to end up in an undue burden. Okay.

DR. LUSTER: I think we have to remember that the immune system is the target organ here for activity. And so we expect to see changes in the immune system. The question is, you know, I mean, they all have to be put into perspective, in a properly designed study. And we can attribute it to the adjuvant, to the antigen. Or maybe putting them together makes things different. I don't know; I almost used the word "worse." But I didn't mean to use that. But different. And that some of those are expected.

I think in terms of immunopathology associated with immune complex disease, my pathologists will tell you, "Well, if I don't see a lesion, I'm not going looking for immune complex." So in the absence of a lesion, I would say that any immune complex deposition isn't relevant. And I would believe the HNE's [ph] before I would go to screening for immune complexes in a whole tissue set.

So I guess my point is that we expect to see changes in the immune system. And I think we have to use good scientific judgment about how those changes might predict some other negative effects. But the fact that we're going to see changes—I mean, I think we have to assume that we're going to see changes.

PARTICIPANT [In Audience]: [Question Inaudible.]

DR. LUSTER: No. Autoantibody production, to me

it's difficult to see how the animal models will predict

what might happen [inaudible]. Now we're talking about an

animal immune response. We're talking cross-reactivity in

an animal model.

If I saw pathology, unexpected pathology, in an organ system, I might investigate it by looking to see whether I had somehow induced an autoantibody to that target organ, perhaps by immune [inaudible] chemistry or whatever. But again, in the absence of pathology in the tox study, I wouldn't look.

But once again, autoantibodies haven't been a good indicator to predict drug-induced autoimmune disease in animal models. It usually comes and humans get it and

they can see it. But when they give it to the animals, it doesn't happen.

One thing that was brought to mind that people have used--again clinically--to diagnose autoimmune disease is cytokine receptors in immune activation markers [inaudible]. But again, I don't think that--I think you're going to have a hard time--I don't know how you could interpret that post-vaccination. I mean, I can't think of anything that can be at this point enough information that you could predict as a screening tool [inaudible].

PARTICIPANT [In Audience]: I'd like to bring up a point. I think this raises a fundamental question on study design considerations once again. And that question is: When do you look? Do you look the day after? Do you look after the first injection? Do you look after a prime boost regimen? Do you look two to three days after the last injection, to look at immediate effects in a prime system? And then, do you look two weeks, four weeks later, to see what happens as the animal recovers?

I think I'd like to hear some discussion amongst the panel and the audience as to when might be the most appropriate timing in terms of looking at immunotox issues.

DR. VERDIER: I think we have a good case study, which is Brian's presentation. We have several times: after the first administration; immediately after the last administration; and two to three weeks after the last administration.

And again, I would like to avoid the words

"immunotoxicity end point." At the end of this period we

are doing an evaluation of the animal, an evaluation of the

immune system of the animal.

PARTICIPANT [In Audience]: Okay. Yes, I recognize that.

PARTICIPANT [In Audience]: Concerning the assessment of the toxicity or the immunotox of the vaccine, I don't know why we should be very different from drugs. In a way [inaudible]--In a way, for example, I agree with your question: When should we look, if the immunotoxicity is going to be after the first injection?

I mean, basically, the question is not very different than from drugs. I mean, we are going to perform a standard toxicology assay. And after, you can include a [inaudible] group for 15 days, for an example. It's a way to address the question.

And also, I don't think we have any evidence that we have to do something more complicated than that. And I don't think we can address the issue by saying, okay, for these ones we are going to say we are going to look at the response a day after, or two days after, or three days, or seven days. I don't know. I think we don't have any evidence that we should be really different from the drug approach.

And concerning for the immunosuppression, what we are doing now for drugs, in Europe there is a guideline that's saying that you need to perform a functional assay, a [inaudible] assay. Because we know that some immunosuppressive drugs are not always picked up by the immunopathology. Okay?

For the vaccine, maybe this hypothesis set up by Mike concerning the temporal immunosuppression is maybe

true. Maybe it's true in animal models. But I agree with Mr. Lambert that maybe in humans it will not always be the same situation. So the question is: Do we need to perform a functional assay to look if the vaccine is inducing immunosuppression by competition? And if it's temporal, what is the consequence for humans?

I think so for immunotoxicity testing, I think if we go for immunopathology, that's fine; meaning that we look at the modification in target human organs. That's fine. Performing a functional assay, for example, [inaudible] assay in rats, to look if there is immunosuppression on this [inaudible] assay due to the vaccine injection, I think this is a very complicated question for something maybe that does not exist right now. Okay. I don't think—We don't have any of that scientific background to address this kind of question very precisely.

And so for vaccine, I think the form is different from drugs now. For drugs we need to perform functional assay, because we know that some drugs are not picking up in the pathology. For vaccine, I don't think we are at the point that we need to do the same assessment as for drugs.

DR. LUSTER: Marc, the only thing I'm a little confused about is, my understanding is that with vaccines and timing for toxicity studies, you might want to be looking at early effects following a typical toxicity study for direct effects or potential for the vaccine formula to induce inflammation. And then you have to also look at the antibody or immune response forming, to see if there are any potential effects, toxic effects, from the immune response. Is that not how you see it?

PARTICIPANT [In Audience]: The way I see it is if you want to address the immunotoxicological end points, you do immunopathology at the end of your toxicological protocol, which I think is standard.

Of course, I'd say I guess you're going to monitor the immune response towards the vaccine during the tox protocol. You can do several—How do you say that?

You can draw blood several times during the protocol, to see what the human response is. That's the way to assess the immunogenicity.

But after that, I think, concerning the immunopathology, we need to have a [inaudible] group. And

why should it be different? I am asking the question, why we should be different than drugs concerning this kind of approach.

I'm not talking about the information, which is another end point. I'm not talking about adjuvants, which should be addressed maybe separately.

DR. HOUSE: Speaking of adjuvants, at the risk of interrupting a very productive discussion, I think we should move on to our next speaker.

And our next speaker today is Dr. Natalie Garcon. Dr. Garcon is a Pharm.D., Ph.D., in immunotoxicology and immunopharmacology. She spent the past ten years working on vaccine adjuvants.

Dr. Garcon joined SmithKlineBeecham Biologicals, which is now GlaxoSmithKline, in 1990, where she set up the vaccine formulation technologies group. She is now in charge of the technology area program on vaccine formulations, alternative deliveries, and preclinical operations encompassing vaccine formulation design, development, preclinical testing through formulation, and

animal laboratory sciences and toxicology evaluation. Dr. Garcon.

SAFETY EVALUATION OF ADJUVANTS:

SHOULD THEY BE CONSIDERED SEPARATELY,

OR ONLY IN THE CONTEXT OF THE FINAL VACCINE?

PRESENTER: NATALIE GARCON, GLAXO-SMITH-KLINE

DR. GARCON: Thank you. So I mean, we've seen how it was easy already for the vaccine, so we're going to talk about the adjuvants now.

[Laughter.]

DR. GARCON: There is one thing I would like to say. The presentation is on adjuvants plus recombinant protein. This doesn't concern DNA vaccine or live vectors. And you'll see that makes a difference for some of the points.

And what we call "adjuvant" is basically vehicles and/or immunostimulant. So basically, should we evaluate adjuvants? And if we do evaluate them alone, should that be done like a drug? And that's what has been discussed many times today. Or should we only consider it in the

context of the final vaccine, which means in the presence of the antigen.

So if we look at drugs--and that has been said, also--the drug, this is the final trigger of the effect you're looking for. And basically, what you want to see when you assess the toxicity is to evaluate toxicity, or absence of toxicity, in animals, before the first time in man.

You want to determine the maximum tolerated dose.

You'd like to identify potential target organ toxicity, and its reversibility.

You'd like to have an idea of the safety margin for your molecule.

When you talk about vaccine, again, this is the whole debate of the immunotoxicity somehow. The vaccine is not the only trigger of the effect you're looking for. The immune response is a big part of it.

So what do you want to do? Again, like for the drug, you want to assess the toxicity, or the absence of toxicity, in animals, before the first time in man.

You don't really want to determine the maximum tolerated dose, because somehow the dose is defined by the immune response you want to induce; so looking at the maximum tolerated doesn't make much sense.

You still want to identify potential target organ toxicity, and its reversibility.

You don't really want to look at safety margins, since you are not looking at maximum tolerated dose.

You want to determine what is the local and the systemic reactogenicity.

And you would like to evaluate the toxicity which is linked to the immune response that you induce.

This is a busy slide, but the point of this slide is that when you look at all the testing that is in the regulation for evaluation of safety of drugs or vaccine, you see that basically it's about the same testing.

The difference comes in the way you perform it. Like for the sing-dose acute toxicity for drugs, you do it in two animal species. In the European guidelines it is said that you can do it in one animal species.

Repeated-dose toxicity study, again, you have differences in the way it is performed. In particular for drugs, it's a daily administration; for vaccine, it is recommended to do it every two weeks.

For the reproductive toxicity study, again, you have the same type. You have the three arms of the study: fertility; embryo/fetal in two animal species—here it's only in one species; you have the peri—and post—natal in one animal species—and this is the same for the vaccine. And again, here it's recommended to do a daily administration, while for vaccine you do it so you optimize the immune response in the animal model, so you do see the effect that the immune response would have.

Genotoxicity study is mandatory for drug. It is not recommended specifically for vaccine. The same thing for carcinotoxicity.

Local tolerance study should be evaluated in both. And here it says it can be part of the repeated-dose toxicity.

Toxico/pharmacokinetics is mandatory for drug; it is not required for vaccine.

Safety pharmacology should be performed, especially on circulatory and respiratory systems.

Immunotoxicology, yes, for the drug. And basically, what you want to see is the effect of your drug on the immune system. Whereas, for the vaccine, if you want to look at the immunotoxicology, what you want to see is the effect from the immune system and from the stimulation of the immune system that you induce with your vaccine.

So what are the guidelines for the adjuvants in Europe? So it's the CPMP guidelines. That was the need for guidance that was issued in '95. Well, it is said that for several adjuvants that are not currently a component of a licensed vaccine, appropriate preclinical studies should be developed on a case-by-case basis, again.

And the following points should be considered:

Injection site reaction, so the local reactogenicity, fever, immune mediated events, teratogenicity, genotoxicity;

Additive/antigen should be compared to the adjuvant alone, or the vaccine without the adjuvant;

Toxicity studies should be done on additive alone;

And the evaluation of the adjuvant effect on the immune response should be done when relevant models exist.

So the next question you should ask yourself is: Why would you perform safety evaluation on the adjuvant alone? Since anyhow it is contained in the vaccine, and you will have that when you do your safety evaluation of your vaccine.

Well, you can do that to discriminate the potential effect that you will see in your final vaccine. But the end point of that somehow is it's in the interest of the manufacturer to refine its adjuvant system and modify it in case you do see some toxicity.

Well, you can consider your adjuvant as a new additive to be injected in humans. And then it's like defining a safety data sheet-like system.

Or you would like to establish a safety package on the adjuvant to be used in various human vaccines. And again, it's in the manufacturer's interest somehow when you do a DMF-like system.

Well, the approach we see that fits best the purpose of the adjuvant is to consider them as new additives to be injected in humans, but to do testing that is adapted for the vaccine environment.

 $\label{eq:continuous} \text{And what do we mean by that? Sorry--I'll tell}$ you that after.

So what we mean is that the way to proceed should be, or could be, for an adjuvant that you will bring to humans for the first time, to first do what we call a profiling package that will be performed before the first time in man, where you look at local tolerance, repeated-dose toxicity, safety pharmacology, and genotoxicity if you use components that are unknown or if there is a concern that there could be any effect.

And how should this be completed? Well, after your first profiling study, you can test your adjuvant in combination with the vaccine when you do the toxicity

testing program. And so you have the separate adjuvant group.

And then you complete it by a longer-term repeat-dose study, if you haven't covered that period of time in the first study. You do perform the reproductive toxicity. You do hypersensitivity and autoimmunity, if there is a relevant model. And apparently this is still open for discussion.

And as for the biodistribution, you only do it if you want to understand the mechanism of the potential toxicities that you have seen, and if this is relevant.

What we mean by that is you're doing a biodistribution of molecules that you inject in the amount of microgram and for which you will need to develop a method of labeling so that you can follow it. It's not always an easy task.

So how should the testing be done for the adjuvant alone? Should we do it on the single component of the adjuvant mix? It's not really relevant. On the final adjuvant formulation? This is certainly the most relevant method of doing it, since you may have interactions between

your ingredients. That will be part of the safety that you will assess in your study.

Dose level? Well, human dose, or the highest feasible if you are in an animal species that contact 0.501 [inaudible]. And you can look at injecting additional lower-level doses if you see effects in the human dose.

The schedule and the route? Well, it should be intended for human use. However, when we talk about scheduling, that's not something that we have covered. But it will be difficult to do a tox study where you inject zero, one month, and six months later. But you can argue on the relevance of doing a toxicity study where you inject every two weeks.

So as a start for the discussion, I would like to propose that the evaluation of the adjuvant should be done as follows:

No acute toxicity study;

The repeat-dose toxicity study, as defined by vaccine;

Reproductive toxicity study, as defined by drug, but not doing the fertility;

Genotoxicity, as it is done by drug, if it's
relevant;

No carcinogenicity study;

A local tolerance study, as defined for the vaccines;

No toxico/pharmacokinetics;

Safety pharmacology study, like defined for the vaccine;

And the immunotoxicology study, like defined by vaccine, but if you have a relevant model that you can use for the purpose.

Thank you.

[Applause.]

DR. HOUSE: Questions for Dr. Garcon?

PARTICIPANT [In Audience]: [Inaudible.] I have two questions, one on the carcinogenicity. Why not carcinogenicity? Because I think in the early '60s there was some concern with some adjuvants that some components were carcinogenic.

DR. GARCON: If we're talking about oil and--In the case of emulsion--

PARTICIPANT [In Audience]: Yes.

DR. GARCON: --and we do have emulsion in some of our adjuvant systems--the components that are used have safety data sheets that are used already for the single component.

PARTICIPANT [In Audience]: Well, I'm asking that for the new formulation like--Well, I just gave an example.

DR. GARCON: Yes.

PARTICIPANT [In Audience]: But there have been some cases before that. There were some issues with the carcinogenicity.

DR. GARCON: Yes, we don't consider that as a relevant testing for adjuvant as a stand-alone.

PARTICIPANT [In Audience]: Okay. The second question is on the immune response to the adjuvant itself. Like Dr. Midthun in the morning mentioned that even FDA is going to ask that if you have an adjuvant, why you need it. Somehow, if you have an adjuvant, you show you need it. But if you have antibody response or strong immune response to the adjuvant, how you are going to deal with that in the long term?

Like the MPLs. We have a lot of antibodies to MPLs. I don't know if there are any long-term studies that are relevant [inaudible].

DR. GARCON: Well, I'm not sure there's a lot of antibodies to MPL, actually, because I mean, I don't--

PARTICIPANT [In Audience]: I don't know. I have a hard time [inaudible].

DR. GARCON: I haven't seen any data showing that. But I think one way to answer the question on the potential injection of antibody against your component of your adjuvant, the consequence of it would be that upon immunization you won't have the efficacy of your adjuvant basically, because you would have an immune response against it. And that's not something we do see in any vaccine we're testing. But we do try to look at antibodies against the component of the adjuvants, yes.

DR. HOUSE: Question over here?

MR. FREES [In Audience]: Yes. Lou Frees [ph],

ID Biomedical.

I think before we go down the track of accepting the idea that there ought to be a nice separate tox package

for your adjuvant, we ought to grapple with the fact that there are more than one classes of adjuvant out there now-of which I'm gifted with one--that fundamentally change their physiochemical characteristics when they're mixed with the antigen, an antigen or any one of several classes of antigens; such that their solubility changes, their charge changes, their hydrophobicity changes, their particle size changes.

And I would just ask that we consider the fact that toxicity studies done with those adjuvants—or slash-delivery systems, if you will—in vacuo, without antigen, may not be relevant at all to the performance of those adjuvants when the antigen is present.

You can make pseudo antigen-type adaptations in some of those systems, but sometimes at the cost of adding other components which may have their own toxicities; for example, detergents, or what-have-you.

So I think that we have to consider very carefully before insisting on an adjuvant-alone package and that, where feasibility dictates, that package might have to be some variant on that.

At the extreme, the adjuvant and antigen have to be considered as a unitary unit; or alternatively, if possible, the antigen alone, followed by antigen plus adjuvant, and then assess your adjuvant essentially by subtraction. Or, last but not least, the adjuvant with perhaps multiple different antigens, even antigens that seemingly are well known, as a way of getting a glimpse at the toxicity behavior of the adjuvant.

But I think all of those things have to be considered. Because there are types of adjuvants which simply will not lend themselves to the adjuvant-alone type experimental design.

DR. GARCON: Well, I think as soon as you consider a new molecule that hasn't been into humans, whichever way you do it, you will have to do a tox study.

Now, seeing if you take it from the side of the adjuvant, test the adjuvant alone, and then add the antigen, if you have that adjuvant system with various antigens, is one approach.

Doing it as you suggest, where you take your antigen alone and test your vaccine and you do that for

different antigens, so then it is a different approach.

And I can see that that can vary from one system to
another, especially if we are talking about systems like
what we are concentrating on here, which are more delivery
systems, per se, than immunostimulants. I think, again,
it's a case-by-case approach.

PARTICIPANT [In Audience]: Yes. I'm wondering about why you wouldn't do an ADME study, if you saw signs of systemic toxicity.

And the second thing is why you wouldn't want to do a fairly complete package to support a DMF, if you were a manufacturer of an adjuvant, so that another sponsor wanting to use that adjuvant couldn't just refer to that DMF in order to do clinical trials?

DR. GARCON: Well, at the end of the day, if you do your adjuvant study like you would do for a drug, that can be part of your DMF, clearly.

For the pharmacokinetics, it's a basic technical issue. I mean, if you can't label or can't follow the molecule you inject, I mean, it's very difficult to do the biodistribution. This is the main reason.

We can go with the example that was given before with MPS. This is not one molecule. This is a mix of 13, 15 molecules, which you can't really label, which you can't really quantify in different organs. So it's not a task that is easily undertaken.

In the case of a molecule like [inaudible] or any system that you can label easily, and you know that that is the molecule you are going follow for all of your biodistribution, I can see you can do it. But in the vast majority of the cases, this is not possible.

PARTICIPANT [In Audience]: May I have--I thank

Ken for his point. I think that your "No" circle in the

ADME studies has to be given more nuance--

DR. GARCON: Yes.

PARTICIPANT [In Audience]: --as on a case-by-case. And it depends on the adjuvant, I think, yes. And I would ask, not only in case of using an adjuvant, not only for an ADME study on the adjuvant itself, but maybe on the type of biodistribution or supportive evidence; whether or not the adjuvant gives a delay of the release of the-

DR. GARCON: Antigen.

PARTICIPANT [In Audience]: Of the antigens. And so such as the absorption or the use of those orals. And the background of all that adjuvant is in a lot of cases not very clear. It's only empirically, and not supported by a lot of data. That's the difficulty.

DR. GARCON: Actually, the adjuvant, the only one that is licensed for human use, is the one which is the most empirical. I mean, nobody knows how it works, nobody knows the biodistribution. I mean, it has really not much known about this one. It's for the new one for which, I agree, you have to attempt for better characterization.

Actually, I believe that if alum was coming now, it won't be accepted.

PARTICIPANT [In Audience]: I have another point. That is the species selection for the adjuvant testing. I think it's very important to have a combination with the vaccine to the antigen itself. That will come back again on the question: What type of animal should be selected for the testing of the antigen then in combination with the adjuvant?

But it might be that the adjuvant might be combined, and that's something arguing against the DMF; that it might be combined with different antigens, and whereas another antigen can be tested in another species. And that's the difficulty.

DR. GARCON: Well, yes. In our case, you know, we are using rabbits. And there is one main reason for that, which is that when we started evaluating adjuvants we did look at system-like emulsions. And rabbits are very sensitive locally for any type of local reaction, and that's why we went for the rabbit. It's an excellent marker for any local reactogenicity with any adjuvant. Now, you can argue that rat would be better for the evaluation of the vaccine with the antigen, but, yes.

DR. VERDIER: Natalie, I would like to challenge a little bit your list of tests. If you consider the recent draft guidelines for excipients, they asked for two animal species. I agree that you cannot classify an adjuvant as a new excipient. However, you may have to do at least the same number of evaluations. So I'm a little

bit embarrassed by the fact that you are proposing only one species for the evaluation of your adjuvant.

DR. GARCON: Well, I think it's the same train or so that you had this morning for also proposing only one animal species. Take the best, and why test it in a lesser one?

In our case, the best for the adjuvant system we are testing is certainly the rabbit, so why go for one that will show you less effect?

DR. VERDIER: With an adjuvant, you can deal with a new chemical entity.

DR. GARCON: Yes.

DR. VERDIER: So if you want to select only one species you need a strong argument saying that all other animal species are not relevant. And personally, I think that's the only case when you can justify one species for a new adjuvant or a new excipient.

DR. GARCON: Yes.

DR. VERDIER: If you don't have any argument to reject a rodent and a non-rodent species, it seems to me

that in this case you have to do both rodents and non-rodents.

DR. GARCON: I think there is one thing we have to remember also in the case of, like we said this morning, vaccine or adjuvants. We are talking about micrograms or hundreds of micrograms, or eventually milligrams, of material that you do inject three times in many years. And the effects you're looking for are much more minimal than what you would see with any drugs given daily.

So I see your point that it makes more sense for a drug anyhow to use two species, because you want to increase the potential to see any side effects. But for a system like that, I'm not sure.

PARTICIPANT [In Audience]: I would argue that for an adjuvant, for a novel adjuvant, the important thing here really is acute toxicity; and that perhaps establishing an MTD as in a single-dose study, given our intended clinical use of--whatever, monthly dosing, periodic dosing--might be sufficient to identify target organ toxicity, establish an MTD. And that might be beneficial in a drug master file to understand that;

notwithstanding the fact that some adjuvants may behave differently with or without being loaded with antigens.

But I'm not sure whether your plan was to use the adjuvant alone--And then the vaccine study, when you did it with your combination, then of course you would--not of course; not that everybody is doing it. But you would include an arm where you did adjuvant alone. And then you got your repeat-dose toxicity of adjuvant alone, relative to adjuvant with immunogen. I mean, that seems a reasonable approach to me.

DR. GARCON: Well, I have some difficulty seeing doing an acute study with an adjuvant system. If you take an emulsion, for example, if you have to give that every day, I'm not sure the animal will survive long.

PARTICIPANT [In Audience]: Right. Right.

DR. GARCON: And it doesn't mean anything for the use or the efficacy of your system for your vaccine.

PARTICIPANT [In Audience]: Right. I mean, I little bit agree with Ken. Hate to admit it, but-[Laughter.]

PARTICIPANT [In Audience]: If you did establish an MTD, that you might want to know metabolism, kinetics, and those kinds of things, certainly with a synthetic adjuvant.

DR. GARCON: Yes.

PARTICIPANT [In Audience]: What is the difference between it and a small molecule?

DR. GARCON: Yes. At least in our case, a lot of the molecules we are using are not scientific, for the time being anyhow. So it's a difficulty.

MS. HELPERIN [In Audience]: Yes, I'm Jane Helperin [ph]. I'm from ID Biomedical.

And maybe I misunderstood you, but it seemed like a lot of the points you had for testing adjuvant alone would be to the manufacturer's advantage, if they were envisioning their adjuvant as a multi-purpose adjuvant for various people. And that's true, and that would be the manufacturer's responsibility.

And I'm wondering the relevance of this to a regulatory guideline where, if a manufacturer had an adjuvant that they weren't interested in doing that, and

they were only interested in an adjuvant for a single purpose, I was wondering what the FDA thought. In a situation like that, would you necessarily be required to test your adjuvant individually? Or would a complete testing on the combination be sufficient?

DR. GRUBER: This is not an FDA perspective, I'm afraid. But I agree with you, Jane. I'm having all along a difficult--It's difficult for me to understand why we need to look at the toxicity of the adjuvant by itself, when what we really are concerned of is what the safety of the final vaccine formulation would be.

And even if you were to conduct these studies to establish things such as the MTD, would it be conceivable that these parameters change if you combine your adjuvant with vaccine antigen? And then you're again left with the question, you know, "Well, now I have my nice package here with the adjuvant alone, but the minute I add the vaccine antigen things change, and I sort of start over."

So in my very minor, perhaps, but personal opinion, I mean, I would actually rather see a toxicity study where the adjuvant is investigated when it's already

combined with the vaccine antigen. And then perhaps include a control arm where you use adjuvant alone in that study. But perhaps I don't see the full benefit of doing a toxicity study with adjuvant alone.

I mean, are there additional parameters that you could look at, that you couldn't establish in a vaccine antigen?

[Tape Change.]

4A PARTICIPANT [In Audience]: --from Biologics

Consulting Group.

How do you deal with the issue of dose of adjuvant, or dose of antigen, as in dose/response relationship, if you don't do an adjuvant study by itself? I'm just not hearing a whole lot about dose/response relationships in this whole meeting.

And I'm a little concerned because dose and dose/response relationships are a very basic part of pharmtox in any other drug, other biological products, cytokines and so forth. And with vaccines, the issue of dose seems to be--It doesn't seem to be emphasized very much.

And I personally think it's a very basic issue with relationship to interpreting pharm-tox data. So I would like to challenge the panel to deal with the issue of dose a little bit more, and maybe think about that when you write this guidance; both the dose of the vaccine and the dose of the adjuvant, and how you interpret tox data, and whether or not the effect is due to the product if you don't have a dose/response relationship.

DR. VERDIER: I think we quickly addressed this point this morning with Jan-Willem, saying that with the antigen we cannot really speak about a direct dose/response relationship.

However, I get your point for adjuvant. And it's true that with a lot of adjuvant we can use this classical way of dose/response relationship. And that's why, perhaps, I am in favor of a study where the adjuvant will be given in milligram-per-kilo, or with the traditional way. Because in this case you will be able to make your dose level relationship, and you will be able perhaps to identify target organs, as we are used to doing with classical drugs.

But Ken, I would like to give you the microphone.

You will perhaps develop a little bit more this question.

Please, go ahead.

DR. HASTINGS: Yes, well, the example that I would think of is something like this. You have a novel adjuvant, and in your tox studies, let's say, you see elevations in liver enzymes. Okay? Now, the question that might come up, is this secondary to some sort of inflammatory response, or is this because the adjuvant biodistributes to the liver and causes damage to the liver itself. And I think that's the kind of basic question you want to answer in a tox study with an adjuvant.

DR. WARNER: I'll play devil's advocate. Does it matter if you establish the target organ and a dose/response relationship?

DR. HASTINGS: Well, if it turned out that this was an experimental adjuvant, and it turns out that it's a liver toxin, do you want to use that as an adjuvant in your vaccine product?

DR. WARNER: Well, that's a sponsor's question, about whether you want to--

DR. HASTINGS: Well, it is, of course.

DR. WARNER: But the safety aspect of setting about those, or understanding what to look for in a clinical study first in man with a new chemical entity, is it sufficient to have identified target organ toxicity and a dose response to that, relative to your intended clinical dose?

DR. HASTINGS: It might help you understand the adverse effects you're observing in your clinical trials.

DR. HOUSE: Sir, you've been very patient. Please chime in.

MR. FEDER [In Audience]: Okay. Martin Feder [ph] from Apovia [ph].

Natalie, you said something: Very little is known about alum.

DR. GARCON: Yes.

MR. FEDER [In Audience]: And I think this highlights one of the problems of vaccine toxicity. Very little is published. Having had to write a short review of alum toxicity recently, I was horrified to find how few publications there were on this. And I see a problem.

We are all working on vaccines, and most of us here are working on adjuvants, as well. And we're doing horrendous numbers of tox studies. And we're taking all of that information; we're giving it to the FDA. They don't have the time to sift through this and really tabulate who is finding what, with what adjuvant. And the rest of us, we're just sitting on the data. I think if we were to publish a little bit more of our preclinical tox studies, this would help.

Now, at GlaxoSmithKline [inaudible], I can see publishing for them would be not good for the shareholders. It would give the opposition an advantage. Further, looking through the participant list, I see at least half the people here are funded by the government. And the rest of us in small companies, we receive money funded by the government.

So perhaps, to the government agencies, it should be an obligation that our preclinical studies on these adjuvants are published. Because this would provide us with a way to seek possible toxicity, to reduce future

toxicity studies, and maybe to make a new adjuvant. Who knows?

[Applause.]

DR. GARCON: What am I supposed to answer?
[Laughter.]

PARTICIPANT [In Audience]: Chyron has an adjuvant that's approved in Europe. It's MF-59. And I think that this illustrates a lot of questions that people are asking about novel ones. It's an oil and water emulsion, so it's not tremendously imaginative. It's not a molecular adjuvant, or anything like that.

But we kind of made a commitment to that adjuvant as a platform. And I think that's when it makes sense to generate a DMF type safety profile that you can just refer to over and over and over again.

And now when I run a new protein antigen adjuvanted with MF-59, all I do is have an MF-59 group alone, and an MF-59 plus the antigen of interest. I don't run a saline control or any other control except for local reactogenicity now, because we've got this data base on MF-59 that just keeps expanding.

If it's truly a novel one, and you're running your program where you've got a control group which is untreated, or a saline or something like that, adjuvant alone, adjuvant plus antigen, then you are basically covering what you need to do to at least get into first-inman and determine whether the adjuvant is any good in humans, and then worry later on about what kind of data package you want to put together to have a platform use of that adjuvant once you know it's good. That would be the way that I would think about it early on.

DR. GARCON: Yes, I agree. But not all the adjuvant systems can be considered as one system to which you add an antigen without modifying your adjuvant system. So it doesn't work all the time. But if you can, yes, it's the easiest way.

[Statement in Audience--Inaudible.]

PARTICIPANT [In Audience]: Yes, we usually expect to see a control arm with antigen alone, just to--You know, maybe it's not from the safety point of view about looking at synergism, but in terms of just demonstrating that there is synergism produced by the

adjuvant. And then of course, to look for any reactogenicity or increased reactogenicity. When you have them both, you compare it to the antigen alone and the adjuvant alone.

DR. GARCON: But is it for the toxicity purpose?

Or is it to show the benefit of adding the adjuvant, so

that more looking at the immune response than the toxicity?

PARTICIPANT [In Audience]: [Inaudible] having antigen alone?

DR. GARCON: Yes.

DR. HOUSE: In the interest of staying on schedule, I believe I will go ahead and terminate the discussion at this point. I'd like to thank these early afternoon speakers, as well as all the discussion.

We'll have a coffee break. Please be back in the room at 3:40.

[Recess.]

MODERATOR: It's time to get on to the next speaker, please, if everybody would take their seats.

It gives me great pleasure to introduce Dr. Paul-Henri Lambert. And he is a native of Belgium, where he

trained as an M.D., and was boarded in internal medicine.

And then his interest for research and immunopathology took
him to Scripps Clinic and Research Foundation in LaJolla,
California.

From there he joined the University of Geneva Medical School, as head of the research unit, and became professor in the department of medicine. And after that, Dr. Lambert joined the WHO, where he was asked to lead the immunology research and training program of the WHO. And he stayed there for many years doing research, and then became the chief of vaccine research and development at the WHO.

And Dr. Lambert is a professor in the department of pathology at the University of Geneva. He is responsible for the coordination of the European Research Consortium for the Optimization of Early Live Immunization, and is directly associated with the recently established Center of Vaccinology at the University of Geneva.

He is also director of the International Advanced Course of Vaccinology, organized under the auspices of the Fondation Milieu [ph]. And finally, he is author or co-

author of over 400 publications, and is a member of several international scientific boards.

And he'll be speaking today on the non-clinical approaches to assess the risks of vaccine-associated autoimmune disease. Dr. Lambert?

STATUS OF NON-CLINICAL METHODS FOR AUTOIMMUNITY

PRESENTER: PAUL-HENRI LAMBERT, M.D.,

CHIEF, VACCINE RESEARCH & DEVELOPMENT, WHO

DR. LAMBERT: Thank you very much.

First, I would like to tell you that my voice remains somewhere between Paris and Washington, and I apologize for adding this poor voice to my poor Belgian accent.

I promise you that I will not give you the answer to the question of whether vaccine can cause autoimmune disease.

What is the issue? First, we know that we have examples of confirmed vaccine-associated autoimmune diseases. I have listed here three of these examples. One is encephalitis associated with a rabies vaccine, this is the old rabies vaccine, the sheep brain; thrombocytopenia associated with MMR and measles vaccination; and the Guillain-Barre associated with the swine influenza vaccination.

And I attract your attention to the fact that the incidence of these complications is still low. Although it reached a level of 30 per 100,000 for rabies encephalitis, it goes down to 0.8 per 100,000 when we speak about swine influenza.

And this is probably one of the key issues when we speak about autoimmunity and vaccination: that we deal with low incidence of complications, which are extremely difficult to pick up in the clinical trials.

The second point is that there is an increasing incidence of some autoimmune diseases, and this is resulting with an increasing risk of coincidence with vaccination events.

Here I'll just take one example, which is Type I diabetes. And all over the world the incidence is increasing. Here we just have the European picture, where we see that there is an annual increase of incidence of about 6 percent in the group of children between zero and four years of age.

And in this picture of increasing incidence, we know that Type I diabetes is occurring at an age which

starts from six months to 15 years of age, which is when we have all our vaccines given. So it's practically unavoidable that any case of Type I diabetes will occur some time after one vaccination event. And it's always very difficult to disprove an association between the two.

The third point is that several autoimmune diseases appear to be caused or exacerbated by infection. And just a few examples: We know that a number of bacterial infections can be associated with rheumatic heart disease, reactive arthritis, Guillain-Barre syndrome, chronic arthritis, also with a number of viral infections. We have association with ITP, idiopathic thrombocytopenia. And even diabetes has been associated with various infections, but an association which is not very good.

So the question is: What is the potential mechanism by which vaccines might induce autoimmunity and autoimmune disease? And what can we do, in terms of non-clinical assessment, in relation to this mechanism?

First, the question of molecular mimicry. We know that molecular mimicry means that there is a similar B- or T-cell epitope on the vaccine and on host antigen.

If we speak first about the B-cell epitope mimicry, we have to consider first oligosaccharide, oligosaccharide epitopes. And here we have a good example, which is the Guillain-Barre syndrome which can occur after campularvector [ph] [inaudible] infection, and is associated with the development of antigangliocyte [ph] antibodies. This is clearly associated with the mimicry between some epitopes on the LPS of campularvector and neurogangliocytes with the [inaudible] the association of GT-1 with one of the LPS type, in green GM-1, which is the same type, and in rat another LPS with another type of gangliocyte. So this is clearly shown, this correlation between this mimicry and the development, which is frequent, of Guillain-Barre after campularvector infection.

It is clear that in this situation it would be probably extremely risky to base vaccine against campularvector on this type of molecule. And for this reason, we could say that this type of homology involving oligosaccharide epitopes can be sufficient to select out the vaccine antigen.

In this case we have to recognize that the knowledge of an association of infection with autoimmunity is of critical importance to take our decision. And we don't have that for everything.

If we go to the Group B meninges capsular polysaccharide vaccine, again we have an antigen which is very similar to capsular polysaccharide which is expressed in humans developing neural tissue. And this is this polyalpha neurominocasein [ph]. In this case we have no known association of Men-B antibodies with any autoimmune manifestation. What do we do? It is a question which is still open today. And obviously, it's a situation where we may like to move to animal models.

And what can we get out of animal models? Well, the animal model in this kind of case can be used if the cross-reacting epitopes are conserved. It can be used to test the possibility to induce cross-reacting responses in animals, keeping in mind that we do not always see the antibodies because they can be absorbed on the host tissue. They can be masked in some way. We can also assess the

pathogenicity, but we know that in this particular situation it has been extremely difficult to show anything.

If we move to protein epitopes, there again we know that on a microbial antigen, like on any protein, most B-cell epitopes are exposed on the surface, they are conformational, and they are discontinuous.

If we look at autoantigens and autoantibodies, it's exactly the same thing. B-cell epitopes are seen by autoantibodies, and they are seen as conformational; they are surface exposed; they are discontinuous. And this makes the problem for identification.

Here we have the example of the GAT-65 islet cell antigen of islet cells in the pancreas mapped. And that's here, this area. It represents the B-cell epitopes as they are identified with autoantibodies coming from Type I diabetes patients. So this is clearly not a question of simple sequence. These are antigens which are highly complex, and where the confirmation is essential.

So the question: Can one predict the risk of autoimmune disease comparing these two things? The study can be based first on "in silico" studies, computer

studies; in vitro analysis; and then finally in vivo analysis.

So the first animal experiment I would like to speak about is the experiment with the computer mouse, in silico prediction. Well, here is the first thing which is usually done, is to search for sequence homologies. I would say that the search for extensive sequence homologies is still of importance, because it means something. But short peptide homologies have no significance, or little significance, when we speak about B-cell epitopes, in view of this importance of confirmation.

Then one can move to the identification of B-cell epitopes. And we have a number of algorithms which have been developed for that, looking at areas of low hydrophobicity, high hydrophilicity, high flexibility, sophistication, antigenicity. And these B-cell epitopes which are identified can be compared between the vaccine antigen and the human protein epitopes.

Well, let's be clear. This is feasible, but it's really feasible when we know which are the target proteins.

And if you don't know what to look for, this is practically a nightmare.

If we move to in vitro analysis, here we can search for cross-reactive antigens on tissue secreted protein with specific antibodies which are induced with the vaccine antigen in animals or in humans in initial trials.

We can also move to in vivo studies. And there I would think that the important point is to look in vivo for the possible binding of these antibodies, for their pathogenicity during active or passive immunization experiments. And this obviously can be done if the cross-reacting epitope is present in the animal.

So B-cell epitope mimicry I would say that this is more a concern for oligosaccharide than for protein.

And when we speak about protein, this is of particular importance, maybe of importance, for vaccines which are against diseases which are known to be naturally associated with antibody-mediated autoimmune manifestations.

We have also to keep in mind that autoantibodies do not mean autoimmune disease; and that to be pathogenic, autoantibodies must have access to target antigen, they

must have functional or cytopathic effects, have a sufficient ability, or be able to form pathogenic immune complexes.

If we move to T-cell epitopes, here we know that T-cell epitopes are small, linear epitopes--small, linear peptides. The size is different if we speak about CD-4 epitopes or CD-8 epitopes, from 11 to 20 amino acids, to eight to ten. We know that some core amino acids are important and can be recognized and used to identify these epitopes.

We know also that some infection induced T-cells can be associated with an autoimmune disease. And here I list a few examples, which are rheumatic heart disease, chronic Lyme arthritis, or reactive arthritis where T-cells and corresponding epitopes have been identified.

So can one predict the risk of autoimmune response if there is a mimicking T-cell epitope on a vaccine? First, again, we go to the computer and search for sequence homologies with the human protein data bank, looking for small peptides which are homologous, six to nine [inaudible].

And there usually you get in despair. Because what you find is a large number of homologies. Here you just have an example from a study which was done by Joel Tonnard [ph], who gave me this data, where the frequencing of sequence similarities has been studied between tetanus toxin and 15 human proteins. And you can see that at the six [inaudible] level more than 200 human proteins have peptide similarities with tetanus toxin and tetanus toxoid. Even if you go to the eight [inaudible] level with one mismatch, you still have 95 proteins which have similarities. So if this would be important, no one could be immunized today with tetanus toxoid.

Then, the next step is to search for common T-cell epitopes, using all kinds of algorithms for epitope prediction—which we call classical. And the questions which I ask are, first, are these mimicking peptides likely to be appropriately processed by the antigen presenting set? And if we speak about CD-8 epitopes it will be the question of processing at the [inaudible] level. And can this processed peptide bind to the various HLA molecules;

particularly, entering and being captured in the groove of this molecule.

Well, this has limitations. We can again get a number of results, but we know that advanced HLA binding predictions are now visible only for a few HLA alleles. So we are limited in what we do.

In addition, even as this is being done, again, we can find quite a number of similar peptides on unrelated protein, predicted to bind to the same HLA allele. And taking just an example, again, tetanus toxoid, if we look for one TT DRB-1 binding epitope, this can be found on 12 unrelated human proteins. Again, tetanus toxoid would appear very dangerous.

And if we go one step further, then we can search for common T-cell epitopes using epitope prediction based on structural modeling. This is quite fancy in this modeling approach. The question which is being asked is:

Is the mimicking peptide likely to be presented with a similar HLA peptide complex structure as a cell peptide?

And here we have an example where this has been done, comparing the binding in the HLA groove of an APC

expressing the B-cell 27 class I antigen. On the one hand, in yellow, cell peptide of B-27, which is considered as a target in reactive arthritis. And here, the chlamydia DNA primae peptide which is shown, in green, to bird very similarly, to have the same structure as the cell peptide.

This is very fascinating. But as you can imagine, it can be done if you know the target protein. And it's taking so much time, in fact, that it's practically hopeless.

So the conclusion regarding this "in silico" prediction of T-cell epitope is that little useful information is likely to come out of random search approaches. And the search is more relevant when we deal with vaccines for infections which are known to be associated with autoimmune manifestation, and particularly if the target antigen, or one target antigen, is being suspected.

We have also the possibility for T-cell to look for in vitro and in vivo approaches. Animal models are not as good. But if the vaccine, again, is for an infection associated with autoimmunity, two questions can be asked.

One is, can the vaccine antigen induce self-reacting T-cells in an appropriate model? And here I take the example of injecting chlamydia into a mouse which is transgenic for HLA B-27, and expresses a nice groove that we have seen before.

The second question is, can identified common epitopes be recognized by the patient T-cell? And again, this has been done in some studies, taking the patient T-cells from the articular fluid and showing that this can react with the same epitope which is being identified.

When moving in that direction, I would say that in this study of chlamydia, for example, starting with more than 80,000 putative potential mimicking epitopes, going down to the stage of reactivity in this in vivo model, this is allowing to restrict to eight or nine epitopes of potential significance.

One point which I think is essential is that the stringency of these different factors involved in T-cell stimulation and their potential role are very different according to what we look for. We know, for example, that

in terms of binding to MHC there is a certain stringency, but not very high. Many things can bind.

In terms of recognition by T-cell, recognition by autoreactive T-cell, again, surprisingly, this is very degenerated. And many T-cells of low affinity can bind to many peptides. This is not selective.

So the real point: The selection, in terms of what comes out of this mimicry, depends on other things. It depends on the presence of co-stimulatory signals, which are provided either by an infectious agent--possibly by a very strong adjuvant. It has also to escape regulatory mechanisms, such as CD-25, CD-4 cells, which appear to be quite efficient normally. And probably, it needs as well a local inflammation in a target organ to get this really to lead to a pathogenic response and recognition.

So all this is so stringent at the end that it is very rare to get this complication. That's probably why every time we are infected we are not developing an autoimmune disease.

If we look at the other mechanisms, bistandard activation, this is different. The question is the

relation to the fact that some infections have been shown not to induce autoimmune disease, but to trigger an underlying silent autoimmune disease. And the question is:

Can vaccine do the same?

I just have here an example. We know that infection with the influenza virus in man has been shown to induce exacerbation of relapsing multiple sclerosis in one-third of the patients within the following six weeks. This is quite impressive. Fortunately, if these people are vaccinated, they do not develop this manifestation.

And we understand that now, in the following way; that some viral infections, particularly with IL-12 inducing viruses, such as the influenza virus, or exported to a number of microbial products, activate dendritic cells. And this activation can be strong enough, through [inaudible] receptors, to induce a release of a high level of pro-inflammatory cytokines, such as IL-1, IL-6, and IL-12. This can then lead to what we call a bistandard activation of other T-cells which are primed, which recognize different epitopes.

And the question obviously is raised: Can new vaccines with new adjuvants, such as MPL, the LT toxin, [inaudible], QS-21, CPG, or DNA vaccines, or some live attenuated viruses or viral vectors, particularly if they induce IL-12--Can they do the same thing? Can they induce all this mechanism and really create the same risk? This I think would be much more significant than any mimicry in the world.

And the question is: Can non-antigen-specific effects trigger an underlying silent autoimmune disease? How can we look at that? What kind of non-clinical assessment do we have?

Here, in vitro methods, we don't have much. We could imagine that we could compare the level of induction of cytokines, particularly IL-12, using different adjuvant formulation and using human PBMC or human purified dendritic cells, and look at this data. But the significance I think is still very difficult to define.

Other approaches which might be more relevant, in vivo, is to compare different vaccines, different adjuvants, in animal models of autoimmunity. And here we

can look, for example, at the enhancement of murine lupus, tracking of EAE. So diabetic mice are not very good for that. And I am sure that this could help for the clinical trial planning. I don't think that the decision could be taken from animal models, but I am sure that we could better know what kind of monitoring we have to include in the initial clinical trial.

I just have here an example of spontaneous lupus, a model which is used in our center, and using New Zealand and B and W mice. In such a model, it's a model of systemic antibody-mediated autoimmune disease, although it's very much influenced by T-cells.

And we can test effects on anti-DNA; on the production and level of antiretroviral antigen, DP-17. We can assess the clinical expression. And here we see on the left the cumulative incidence of proteinuria in control New Zealand mice, as compared to mice which received adjuvants which are derivatives of LPS, which clearly do not accelerate the appearance of proteinuria; may have even some protection effect. And on the right, we see the same

curve for cumulative incidence of mortality. And again, we see that the two adjuvants do not increase mortality.

So we can monitor survival. And we have to look at the histopathology to see to what extent the picture can be changed by what is given to these mice.

Another model which I think is very relevant—although like all models we don't know what to do with the reserves at the end—is that this is the model of silent priming for autoimmune experimental encephalitis. There are different possibilities, but the principal is to have mice which are primed.

Again, myelin is in the top part with infection with a thallus virus, or immunization with myelin-based protein in complete foreign adjuvant, or to use genetically predisposed mice which are transgenic for antimyelin T-cell receptor. These mice do not develop any clinical disease unless they are exposed to strong adjuvants, such as complete foreign adjuvant; or to IL-12 inducing viruses. In that case, the murine CMV. And this then leads very rapidly to delineating disease.

This is a kind of model where different adjuvants can be compared, different vaccine formulations, and see to what extent this kind of bistandard effect leads to real pathology.

One thing that I want to say is that I believe that non-antigen-specific effects of live or adjuvanted vaccine, at least the ones we know with the existing vaccine, appear to be time limited. And they are often localized to the regional lymph nodes. They are also very likely influenced negatively by regulatory mechanisms—the CD-4, CD-25 T-cells—and therefore, they are very unlikely to lead to these kind of dramatic results as we see in these models.

And I just take here the example of BCG. BCG is really considered as the strongest TH1 vaccine that we can give today. Well, in the studies in which we have collaborated with a group in The Gambia, we looked at the effect of BCG given to young children at birth, together with other vaccine, to see to what extent it is influencing the response to the other vaccine.

What has been seen is that if BCG is given at the same time--that means at birth or at two months--as the hepatitis-B vaccine, in the same arm, there is a very significant increase of the Interferon-gamma response to the unrelated vaccine, to the hepatitis-B. However, if BCG is given two months before or two months after hepatitis-B vaccine, there is no effect at all. This is really transient. It's like an adjuvant. If BCG is there at the time you get your vaccine, you get the effect.

And something which I found myself most surprising is that BCG has been used by an Italian group as an immunomodulator for the treatment of patients with multiple sclerosis. And they found no major adverse effects. And in fact, they even claim there is a beneficial effect of BCG. That means that BCG does not change completely the individual into a super TH1 person.

So in conclusion, I think that we can say that the potential risk of vaccine-associated autoimmune response is generally very low; often difficult to predict on a purely theoretical basis, such as mimicry; that for vaccines against infectious diseases known to be associated

with an autoimmune pathology, we have to consider the theoretical risk of autoimmune response. And I think that a case-by-case approach has to be selected to see if this is a reality or not.

And finally, the potential risk of triggering an underlying autoimmune disease through non-specific bistandard effects, adjuvants, some live vaccine, is probably low, and even very low. But I think it would be a mistake to ignore it completely at this stage. Thank you.

[Applause.]

DR. LAMBERT: Okay. So we have questions?

PARTICIPANT [In Audience]: I have two questions. The first one is the "in silico" analysis. Even if you do it on a longer stretch of amino acids or a longer peptide, you're going to come up with matches. So for example, you're developing a vaccine, and you come up with a match. What do you recommend on the next steps? You have no idea what this could be related to. Do you have any recommendations?

DR. LAMBERT: I think that, basically, if we suspect the potential B-cell epitope, we have to look for

it, but we look for the cross-reactivity. And this may mean more.

At the T-cell level, I think that with the present studies which have been done, and if we have no indication at all that such an epitope, such an antigen, might be involved in an autoimmune manifestation, I think we might as well forget it. I think it's falsely giving the idea that this may be important, and I think that it's not.

PARTICIPANT [In Audience]: Okay.

DR. LAMBERT: You know, the real problem is that when we speak about vaccine and infection, we are used to speak about T-cells which have a relatively high avidity because they are directed against foreign antigens.

When we speak about the self-reacting peptide, and if they are seen by T-cells as they are seen by T-cells which have not been tolerized normally, and therefore they are the left-overs, they are low-avidity T-cells, low-avidity T-cell receptors, and they can bind as well these peptides to [inaudible] identified, but many other

thousands, as was even without any amino acid in common with the first one--So it means nothing.

PARTICIPANT [In Audience]: Okay. So that leads actually into my second question, where you had those beautiful animal models of diseases that could be induced. I just wanted to make sure you're not recommending that we actually start using these animals indiscriminately; that you only use them if you think that there is a suspicion that whatever you found could cause or could induce some sort of autoimmune disease.

DR. LAMBERT: No, my feeling is that this type of model now has only a usefulness to compare different adjuvants, different formulations. For example, if you had the same adjuvant with some variance, or you derived different molecules from the same one, you might compare and see if, with the same level of activity, one is more likely for the question of binding capacity, diffusion, the kind of cell that would be seen--is more likely to induce this kind of bistandard activation than another one.

I think that by itself I would never recommend to do this kind of test just to see if you get the positive results, you know. By itself alone, it does not mean much.

PARTICIPANT [In Audience]: That's interesting.

I'm trying to put that into perspective. I agree with you about the diabetic mouse not being a very good model. I'd like to hear why you think that; sort of what the criteria are for what you think are or would make good models; and at the end of the day, how you use the information you get from some of these things.

DR. LAMBERT: From which model do you speak of?

PARTICIPANT [In Audience]: The NOD mouse.

DR. LAMBERT: Yes. Again, I think I would put on the same level all of these kinds of models, spontaneous or induced models of autoimmunity. It's not giving you directly an answer, or the capacity to induce or reduce the disease which is present.

I think if we would have an adjuvant--For example, if in a model of NZB mouse we would inject LPS or [inaudible], we know that this will have a tremendous

effect on the disease, will accelerate considerably the disease.

In this situation, this would tell you that with this kind of molecule, maybe you have to watch out. And when you move to your clinical trial, I would not stop the clinical trial for that. I would move into it, if you can, and then have maybe a special monitoring during your clinical trial for some of the indicators, some of the markers of systemic autoimmunity.

PARTICIPANT [In Audience]: Okay.

STATUS OF NON-CLINICAL METHODS

FOR HYPERSENSITIVITY

PRESENTER: FRANCOIS VERDIER, AVENTIS PASTEUR

DR. VERDIER: Perhaps we can have questions on autoimmunity after just a few slides about hypersensitivity.

Thank you, Paul-Henri, for this superb presentation. I will try just very briefly to cover another aspect, which is hypersensitivity reaction. It was already discussed briefly this afternoon.

And it's true that with vaccines we have some case reports about adverse hypersensitivity reactions; mainly these case reports are presenting anaphylactic reaction, also called "type I" hypersensitivity reaction. However, it's sometimes related to the vaccine excipients, and not to the antigen itself.

There are also some case reports of vasculitis. But it's difficult to classify vasculitis. According to various textbooks or papers, it's either classified as a

type III hypersensitivity reaction, or as an effect in autoimmune disease.

Anyway, for both types of reactions, there are very few, or even no, animal models, except perhaps the guinea pig model which has been published.

[Tape Change.]

4B

DR. VERDIER: And then it's followed by an IV challenge. And after this IV challenge, you monitor the clinical signs, and perhaps the death of the animals. You can also take the serum from the animal and do a cutaneous passive anaphylactic reaction, using additional recipient guinea pigs.

This method is partially validated for large molecules, or weight molecules, which are known to trigger in humans this kind of adverse reaction. And this model can detect their potential toxicity.

However, we know that we can obtain false positive reaction with mammalian proteins. So if in your vaccine you have some mammalian proteins, you may get false positive results.

We know also that this kind of model cannot detect haptens, small molecules which need to be combined with the carrier molecule. For example, this model will not detect antibiotic hypersensitivity reaction.

So my interpretation is it could be used sometimes for new excipients, if you are sure that you are fulfilling this limitation, the limitation of the test.

Perhaps the local lymph node assay, which was initially developed to detect type IV hypersensitivity reaction, can used also to detect immediate hypersensibility. I know that the group developing the LLNA is trying to use cytokine assays to see if we are triggering a TH2 or a TH1 orientation. But it's not yet totally validated for this type of acute reaction.

I just would like to share also with you some results obtained recently with this guinea pig model with not sub-acute immunization, but with intranasal immunization. We did a start of a validation protocol using intranasal administration on days zero, two, and nine. And then we did a challenge IV administration on day 23 in these guinea pigs.

We tested positive reference products; namely, ovalbumin and amylase, which is a [inaudible] known in humans to trigger hypersensitivity reaction. And we added also in this study a negative reference product, a drug which is already on the market and which is a bacterial ribosome fraction.

And we had groups of animals receiving the reference product without adjuvants, and also groups receiving a strong TH2 adjuvant—a mixture of cholera toxin and cholera toxin subunit B. And in this protocol we were able to detect the two positive reference products, but only in the groups receiving also the strong TH2 adjuvant. And therefore, it's just a start, but we can perhaps say that this test may be used with some limitations for the evaluation of components of intranasal vaccines.

Regarding vasculitis, we did a literature search, and we didn't find any good animal models to detect this type of adverse reaction.

Regarding another type of hypersensitivity, contact sensitization, it's not something which is really reported for vaccines today; perhaps because all vaccines

today are given by intramuscular or subcutaneous route of administration.

However, in the future it may be required for a vaccine which would be given by patch, because we will have a topical application of the vaccine formulation. And in this case, we may have to use a very well-known test which has been validated for a long time for this type of topical sensitization; namely, the Magnusson-Kligman test in guinea pigs, or the Buehler test.

As a conclusion, I would like just to repeat one sentence that I have put already in my first slide, regarding the status of non-clinical methods for hypersensitivity: very few or no animal models for this type of adverse reactions. So we should be very cautious about the use of the model, and be sure of the limitations of these models. Thank you very much.

[Applause.]

DR. MIDTHUN: I think that these talks are open for some discussion now. But before we do that, I would just like to address a question that we received earlier on. Someone raised the question, or they understood what I

said to mean that we would ask for exactly the same type of testing for a vaccine indicated for therapeutic treatment of an infectious disease, versus one indicated to prevent infectious disease.

And what I meant to say was that the same considerations hold. You need to ask the same kinds of questions regarding: Do you have sufficient safety for this product to enter into the clinic, based on the risk-benefit. But just because you have the same considerations doesn't mean that you come to exactly the same conclusions. So I think, or I hope that that clarifies what I meant to say.

And perhaps we can now proceed to discussing some of the topics presented.

I think everyone is tired.

MR. KENNEY [In Audience]: Rick Kenney [ph], from IMI.

I'd like to raise an issue that was brought up earlier that I think wasn't fully discussed. You know, DNA vaccines and things are certainly out there as being developed. But there are a lot of vaccines, protein

vaccines and things, that follow more of a traditional model. And from my experience, these vaccines often change relatively significantly between the preclinical period and phase III.

And I'm wondering if there is sort of a place for a graduated assessment of toxicity along that path? We've heard a lot of "Rolls Royce" approaches by the "big three," and sometimes that's pretty expensive.

DR. GARCON: Well, I can speak first. I don't know what you call the "Rolls Royce approach." I guess it's doing everything before phase I. This is not the approach we have. In particular, for everything that is with repro-tox study, we only do that prior to phase III when the final process of the vaccine is established. So that you are not in a situation where, if you do have a modification of the process during your evaluation of your product during phase I, IIA, IIB, you don't have to repeat the tox study, the repro-tox study.

So basically, we do the local, the repeat toxicity studies, genotoxicity if necessary, safety pharmaco, prior to phase I. And when we arrive before

phase III, if the process has been modified in such a way that we consider it to be significantly different from the first product that went into humans, we redo the repeat-dose toxicity study, and we do the repro-tox study at that time.

PARTICIPANT [In Audience]: I actually was going to ask a similar question in a different way. I have the same basic answer for what we do prior to phase I, in that the DART studies are later, prior to licensure, unless it's specifically targeted for pregnant women.

But one of my questions is whether there's a minor change in the formulation, you know, just to increase stability and things like that, where you really haven't changed active ingredients. And is there a way where we can demonstrate equivalence or comparability so that we don't need to repeat the toxicity studies? Such as through demonstrating comparable immunogenicity, comparable biodistribution, or something to that effect.

DR. SUTKOWSKI: I guess I'll take a crack at it.

You know, this issue is something that's very difficult to
say across the board. It's so case-by-case dependent, in

terms of how significant the change is, whether it's a simple formulation change or a more significant change.

And since this whole series of events we're discussing today is evolving, those are the kinds of questions that we have to begin to address more frequently now, if we're going to be requesting toxicity studies more frequently. So it's still an evolving question that we'll need to address as we go along now.

I don't know if any of my FDA colleagues want to add anything to that.

DR. WARNER: It may not be an appropriate example, but for a therapeutic vaccine where we did change the formulation, we were able to bridge based on immunogenicity, at least during the clinical program, showing a comparable quantity and quality of immune response in terms of that immunogen. So at times anyway that seems to have been appropriate.

I also disagree to a certain extent about the "Rolls Royce approach." You've mentioned the "big three."

I think there's four pharmaceutical companies up here. I'm not sure where that leaves me--

[Laughter.]

DR. WARNER: --but, you know, I think we take-Here at Wyeth, we do a package that is scientifically
based. We often only include a single species for IND
enabling studies. Again, it's scientifically based. We
put together with the immunogenicity studies a whole
package; address the questions that are involved with that.
And I honestly think that--I don't think we're going
overboard.

DR. LUSTER: If FDA goes off and decides to do adjuvant testing separately, is there any value in using a standard protein antigen so you can have comparative data across different adjuvants, across different laboratories, that sort of thing? Just a thought, anyway.

DR. GRUBER: I'm not quite sure if I understand the question. So you're asking about some adjuvant standard to compare your different formulations to? Can you--

DR. LUSTER: Yes. Well, it was discussed earlier from the audience that if one is going to start looking at adjuvants separately, that the formulation is going to be

modulated because of whatever protein is part of it. And I'm not sure how else you can look at different toxicities and their efficacies if that's the case, unless you happen to use the same protein all the time so you have that type of comparison.

DR. GRUBER: I think we certainly would have to think about this. But you know, I really think we are not there yet to make a decision whether we really want to recommend or require adjuvant studies by themselves, that this would be a prerequisite in order to actually proceed to a clinical study, in addition to looking at the vaccine adjuvant formulation. I really think that is something that we need to discuss first before we then go and basically answer question "B."

I think we heard lots of comments for doing adjuvant studies by themselves, and against perhaps. And I think we're going to be considering all these comments. There may be situations where somebody would think it's of advantage to do an adjuvant-only study. But there may be situations where it's plausible or it's more feasible or it

would make more sense to just test it combined with the vaccine antigen.

And I think that, you know, any time you write guidance, you try to be flexible. And I think these types of things could also be discussed in the guideline.

And I wanted to add, actually, to something that Liz had said about, we've got these questions, and I'm going to be discussing this tomorrow, for us to please define the type of product changes that would necessitate additional reproductive toxicity studies, and even in this case, of course, additional toxicity studies.

And I think that is really, as Liz said, a decision that needs to be looked at on a case-by-case basis, because it depends on the plausibility, on how likely it would be that doing a minor change in formulation would really increase the adverse event profile of the vaccine, if you will.

And I think it's probably safe to say that if you have data demonstrating the equivalence between your study or your batch that you have done the tox study with, with

your new, improved batch, then I don't think that we would be requesting additional toxicity studies.

But again, I think you would have to justify why an additional toxicity study is not necessary, as much as you would also need to justify why you're going to use only one animal versus two animals, and the type of animal that you're going to be using.

So I think, again, many of these things come back to sound scientific judgment. And that's how we're going to try to address the issues in the guidance document, I hope.

MR. BALDRICH [In Audience]: Hello. I'm Paul Baldrich [ph], CoVance [ph].

In light of us perhaps having a new guideline, wouldn't it be useful if we can clarify a difference between an excipient and an adjuvant? Because obviously, the FDA brought out some draft guidance on excipients. And if we're calling adjuvants different property, then that could have some connotations. Would the panel like to comment on that?

DR. LUSTER: Well, if I understand your question, the draft guidance on excipients, I mean, you know, an adjuvant is not, I don't believe, considered an excipient in that guidance. I mean, an adjuvant is an active component of the vaccine product.

DR. VERDIER: Sometimes it could be different to make a clear wall between an excipient and an adjuvant. If you take, for example, a liposome which will carry the antigen and would present the antigen to present in the cell in a better way, the liposome can be considered an excipient, because it's a carrier. But it can be also considered as an adjuvant, because it's boosting the immune response. So in some cases, the difference between an excipient and an adjuvant can be very difficult to make.

MR. : How would you consider the liposome to be an adjuvant, exactly?

DR. VERDIER: Natalie, do you want to answer to this question?

DR. GARCON: Thank you.

DR. VERDIER: As you are working on liposome more than me.

DR. GARCON: Before that, I think the definition of an excipient is that it's something you add to a drug or a vaccine or whatever, for which the sole purpose is to maintain your product under a certain stage and help for the stability. It doesn't have any activity whatsoever. So it can be [inaudible]. It can be anything.

The liposome, for me, it's a carrier. This is a delivery system. This is a carrier. So the definition we take of adjuvant is that it's an immunostimulant and/or--Sorry, it's a delivery system and/or an immunostimulant. But it's not an excipient. It does have an effect.

DR. VERDIER: Yes, but if I am right, in the drug guideline from the FDA they give an example. And they say that carrier molecules are excipients.

MR. : Excipients, yes.

DR. VERDIER: So you see that they are overlapping fields.

DR. GARCON: Yes.

DR. VERDIER: If you take the recent draft guidelines, they say excipients can be carrier molecules.

MR. : They can enhance penetration, they cay--

DR. VERDIER: Enhancing penetration.

MR. : Yes.

DR. SUTKOWSKI: Perhaps that's something we'll have to--

DR. GARCON: Then we are stuck.

[Laughter.]

DR. SUTKOWSKI: --define more clearly in our guidance document.

MR. : That was very clear, right?

[Laughter.]

MR. BALDRICH [In Audience]: I have a secondary question on this. Jan-Willem was talking about adjuvants. Juvenile animals, we touched upon that this morning.

Obviously, if you're developing a new drug substance with a clinical indication in pediatrics, there's possibly a need to use juvenile animal toxicity testing. And if we're talking about developing a vaccine in largely a pediatric population, should we be doing our animal studies in very

young animals; for example, one-day-old rats and two-weekold dogs?

I'm just talking about it. We don't want a conflict of interests, where we're pushing to do our pediatric animal studies for drugs going into children; whereas for vaccines where, I agree, the immune system of very young animals is not very well known--But the argument could also be used for NC's [ph].

MR. VAN DER LAAN: May I add to this question,
Paul? I'm bringing back to the question, the main question
of this morning that has not been discussed: What is
determining the relevance of an animal model? Is it the
immunogenicity, even in a young or an older animal? Or is
it a challenge against the organism for which the vaccine
is derived? And I think that's the main issue, maybe for
the pharmacodynamics of a vaccine. But it's very much
related to the toxicology and the safety of the vaccine.

Can anyone give their answer? Marion, I think you would add your questions to this question.

DR. GRUBER: Jan, I wanted to ask you what you suggest that the answer is to this question. What would it be, in your mind?

MR. VAN DER LAAN: We in Europe have made a difficult decision, maybe, to request at least a challenge model in our guidelines; at least to think about a challenge model. And that's what's lacking this morning in the presentation of Elizabeth only talking about immunogenicity as a pharmacodynamic or that type of end point.

And I think that's also related to, if you want to use juvenile animals, can we have a model in juvenile animals resembling the disease of an organism? And we have early this year developed a small pox guideline in which we have introduced also such a challenge model with an organism homologous to the species used.

DR. GRUBER: I don't know if I have a real good answer to this. But my answer would be that you do what is most feasible and practical. If you are in possession of an animal model that is susceptible to the pathogen, to the human pathogen, if you are so lucky, and if you can do a

challenge study, that is of course almost the ideal world. And if you can define your animal model in terms of being susceptible to the disease and being able to mount an immune response whereby we can now discuss what is the relevant immune response, then I think this would be wonderful.

But I think the basic message should be that you do what is practical, and you try to do the best you can. You have to justify your animal model, why you think that is the most "relevant" model to use in a certain situation.

And personally, I think it should not be really driven by, "Do we have a lot of historical background data for this animal model?" It may be that you don't because you have to divert to an alternate species. And then you perhaps have to consider revising your study design, perhaps to include bigger control arms, because you lack historical data.

So I think there is no one answer for this. It really depends on the vaccine product you have, the type of disease that you want to prevent. And you do the best you can there.

I feel that we cannot answer this question.

There is in my mind no one definition of what a relevant animal model is. But that's--Yes, François.

DR. VERDIER: No, I just want to say just one word about juvenile animals. I think we said this morning that we are not ready to do juvenile animal study for vaccines. So we should not forget this question. We should perhaps do some research on juvenile animals. But I don't feel we can tomorrow do GLP study with vaccines given by subcutaneous route or intramuscular route of administration in, let's say, one-week-old rats or one-week-old mice.

And regarding the relevance of animal models, I fully agree with Marion. I think it's true that the ideal model is an animal model giving a humoral, a cell-mediated response; but also, giving perhaps pathological reaction to a challenge. But it's not always the case. And we have to take the model which shows some relevance, and not perhaps all ideal relevance.

MS. SAGER [In Audience]: Polly Sager [ph], from NIAID.

I just wanted to follow up a little bit on this use of the relevant animal model and the notion of, if you have a challenge model, that that really is the model that should be used. We at NIAID are in the process now of developing a number of vaccines related to biodefense, and are working on right now anthrax vaccines and some small pox vaccines.

For both small pox and anthrax, we have challenge models. In the case of anthrax, it's rhesusercinose [ph], and for small pox it's cinose [ph] with monkey pox challenge.

If I'm hearing you correctly, you're saying that the most relevant model for the toxicology for those vaccines would in fact be rhesusercinose. Is that what I'm hearing? I just wanted to check.

DR. VERDIER: I think, yes, if you have good arguments. If you have arguments saying that, "We have, unfortunately, to use non-human primates, then we have perhaps to do a non-human primate study with a limited number of animals." I know that we should consider the

ethics of using non-human primates, but if it is the only one, we have to do a non-human primate study.

MS. SAGER [In Audience]: Well, that's perhaps what you're saying. I'd like to, I think, hear what the FDA is thinking on this.

DR. SUTKOWSKI: I think you're confusing a safety study with an efficacy study. And for an efficacy study, you would need to justify whatever animal model you choose. And for your safety study, I think we would prefer that you use a well-characterized toxicology animal model. Okay?

MS. SAGER [In Audience]: Thank you.

DR. SUTKOWSKI: Anybody else?

MR. VAN DER LAAN: May I comment? I think that in the European situation we try--And I think also in the ICH-6 document regarding biotechnology. The relevance of the model is defined by the relevance of the efficacy. So that I prefer the difference between toxicology and efficacy. We try to define the relevance of the animal model from an efficacy standpoint. And we have had discussions internally about influenza and a lot of other vaccines.

And with respect to the European situation, there is a statement from the scientific steering committee from the European Commission, which is located in Brussels. And that also explains the use of non-human primates, and maybe even chimpanzees, for vaccines on apes on tuberculosis and that type of vaccine. So even in our part of the world, where the use of animals for developing pharmaceuticals is under high pressure, this is an accepted political standpoint.

PARTICIPANT [In Audience]: If I could, I think the discrepancy is what you mean by "efficacy." And I think for the animal models that we use for toxicity testing, a surrogate marker for efficacy being the immune response, the antibody response, or the CTL response, would be an adequate measure of the efficacy; since we are interested, one, in the intrinsic toxicity of the test article and, two, the toxicity of the new mediated events.

To take that one step further, to demand that the model also respond to the infectious pathogen you're worrying about I think is putting a hurdle that is an undue hurdle and an unnecessary hurdle; because I think different

animal models could be used to tie those surrogate markers of immunogenicity with protection. But for the toxicity studies, I think the surrogate markers, the immunogenicity markers, should be an adequate measure of efficacy.

PARTICIPANT [In Audience]: [Inaudible] from GlaxoSmithKline.

Can the panel comment on co-encoded molecular adjuvants in DNA vaccines, how they'd be viewed? I'm talking about molecular adjuvants within a DNA vaccine, not a separate plasmid.

DR. MIDTHUN: Is Dennis Kleinman here?

[Pause.]

DR. KLEINMAN: I'm sorry I came.

[Laughter.]

DR. MIDTHUN: I'm not.

DR. KLEINMAN: DNA vaccines are getting increasingly complex. By themselves, in small animals, they seem to be both immunogenic and capable of inducing protective responses. But in higher mammals—us—they seem to be less immunogenic, and perhaps therefore less

efficacious. So various sponsors are trying to manipulate those DNA vaccines to improve their immunogenicity.

It is perhaps relevant to Dr. Lambert's presentation that one of the approaches has been to incorporate either cytokines themselves in the formulation with the DNA vaccine, or cytokine-encoding plasmids, including GMCSF, IL-12, IL-6, Interferon-gamma.

This is rather interesting. Because in one sense it means that the self-antigen being encoded by that plasmid is now perhaps being seen as an autoantigen. And that raises a very different issue than the cross-reactivity or molecular mimicry that Dr. Lambert was referring to.

What the agency so far has required is that since agents such as GMCSF, by themselves, can be such strong immunomodulators, we have asked that they be tested independently in the context of vaccine adjuvants, in terms of safety. Moreover, we have gone so far as to request that that be done in the specific animal model. So for example, human GMCSF is not going to be biologically active

in mice. So we have asked that the companies would come up with the mouse homologue to GMCSF, and demonstrate safety.

PARTICIPANT [In Audience]: [Statement Inaudible.]

DR. KLEINMAN: Right. So in our preclinical toxicity studies to date, when using cytokine-encoding plasmids we have requested that the cytokine itself be studied independent of the co-administered DNA vaccine, to evaluate whether by itself--And remember that there is a rationale behind that, which is, as you know, when you co-inject the two different plasmids, they need not be taken up by the same cells, nor traffic in the same way. So the concern would be that even after you mix them, there is the possibility that, for example, the GMCSF-encoding plasmid could go elsewhere or do other things. So it seemed prudent, at least early on, to look at them independently.

Whether this will still be the case in another two or three years--or six months, for that matter--as we accumulate data on the safety of the co-injection of additional plasmids, I can't say. That's constantly under re-review.

PARTICIPANT [In Audience]: [Statement Inaudible.]

DR. KLEINMAN: So the question is: What if you're a very smart company and say, "Okay, we're going to put both plasmids within both encoding regions in a single plasmid"? We have dealt with that. And the fact is, if that is going to be your final product, it would be unreasonable for us to make you break them apart. So in that case, you would simply have to do your safety with the GMCSF plus "X."

The disadvantage to that is that most companies are not interested only in developing a vaccine against a single product, but would like to mix their, for example, GMCSF with multiple other plasmids. And then to facilitate that, they should test them independently.

DR. MIDTHUN: Thank you.

MS. BENNETT [In Audience]: Hi. I'm Jillian
Bennett. I come from Australia, where we have a small
vaccine manufacturing company there. We interact closely
with our agency, Therapeutics Goods Administration.

I guess I just wanted to pick up on a point that Natalie made about the repeat-dose study in a single animal species. The way that we've actually viewed that is that in our repeat-dose studies we have a novel adjuvant that we're mixing with a number of different antigens. And so that's actually our platform technology.

What we're trying to do is build up a database of experience in the rabbit model for repeat-dose studies.

And when we present in our clinical trial exemption applications—which equate to an IND in the U.S.—to our agency, we usually present the preclinical data as a data package. So that there's supportive data for all other antigens, plus our adjuvant alone which is used in each study. So that they can actually see whether there's any trends associated with that particular adjuvant, or whether it's associated with the vaccine formulation.

But to build on the repeat-dose single species, usually what we also have done is that, unlike for new chemical entities, we've usually developed a number of animal models where we've tested the dosage regimen that

we're proposing to take into the clinic and that we've tested N-plus-1 in our repeat-dose study.

We've also done dose ranging studies, to give us an idea of what sort of dose we do want to take forward.

And we usually do go forward with our maximum proposed dose in the repeat-dose study.

And so I think, in terms of conventional toxicology, although it looks like we're only doing a single species, we actually have a body of data in a number of animal models. And I think that that's actually something that we should remember.

And so I would hope that FDA would consider this in preparing their guidance document for industry, that often there is a lot of other relevant supportive data. We do tell where something hasn't been done to GLP, and explain what the deviation is from GLP. But I think it's still very useful supportive data that helps build the picture to do a good safety assessment of a vaccine prior to taking it into the clinic.

DR. SUTKOWSKI: I think we would agree. That's a very nice comment. Thank you.

DR. MIDTHUN: Okay. I guess one last question. We just wanted to see if anyone had any more questions on the selection of dose. Otherwise, we'll wrap it up. And possibly even schedule a regimen.

DR. GRUBER: I think the question of dose maybe is certainly an issue that we can sort of continue discussing tomorrow, because we'll have sort of the same issues to deal with there, I think. So if you want to think about this this evening and come back tomorrow refreshed and rested, then we can basically discuss it.

All of this, what we didn't accomplish today, we're going to be discussing tomorrow, in addition to discussing reproductive tox assessment. Okay? Great.

DR. GARCON: Actually, I have a quick question.

Denise, don't go away, since you're here. Continuing on
the DNA vaccine, we have talked about safety assessment of
DNA vaccine; we have talked about safety assessment of
protein adjuvanted vaccine.

Now, in the case that many people are going, that route of prime boost vaccine going into humans, and if you have already a safety package in your DNA approach, you

have a safety package in your protein, would you have to do again a safety assessment of the combination of both?

[Pause.]

DR. GARCON: Yes. Okay. Thank you.

[Whereupon, the workshop recessed; to reconvene

at 8:30 a.m., the following day, December 3, 2002.]

- - -

SOCIETY OF TOXICOLOGY

CONTEMPORARY CONCEPTS IN TOXICOLOGY SECTION

U. S. DEPARTMENT OF HEALTH & HUMAN SERVICES
FOOD & DRUG ADMINISTRATION
OFFICE OF WOMEN'S HEALTH

CENTER FOR BIOLOGICS RESEARCH & REVIEW

WORKSHOP ON:

NON-CLINICAL SAFETY EVALUATION

OF PREVENTIVE VACCINES:

RECENT ADVANCES AND REGULATORY CONSIDERATIONS

VOLUME II

Tuesday, December 3, 2002

Arlington, Virginia

[TRANSCRIPT PREPARED FROM A TAPE RECORDING.]

	PAGE
MORNING SESSION:	
INTRODUCTORY REMARKS: MARGARET ANN MILLER	
Office of Women's Health, FDA	6
REPRODUCTIVE TOXICITY ASSESSMENT OF PREVENTIVE VACCINES PRESENTATIONS:	
[Note: All presentations were accompanied by slides]	
REPRODUCTIVE TOXICITY ASSESSMENT OF PREVENTIVE VACCINES: MARION GRUBER, Ph.D.	
Office of Vaccines Research & Review, FDA	17
HUMAN T AND B CELL DEVELOPMENT: RICHARD INSEL, M.D.	
Univ. of Rochester, School of Medicine	51
MATERNAL IMMUNE SYSTEM STIMULATION & EFFECTS ON FETAL TERATOGENESIS: STEPHEN HOLLADAY, Ph.D.	
College of Veterinary Medicine, Virginia Polytechnic Institute	86
DEVELOPMENTAL IMMUNOTOXICOLOGY: RALPH SMIALOWICZ, Ph.D. U.S. Environmental Protection Agency	119
AFTERNOON SESSION:	
ROUNDTABLE DISCUSSION:	

MERCEDES SERABIAN, CBER, FDA, Moderator

47
50

147

$\underline{C} \ \underline{O} \ \underline{N} \ \underline{T} \ \underline{E} \ \underline{N} \ \underline{T} \ \underline{S} \ [Cont'd.]$

	PAGE
TOPIC FOUR: "Animal Models" PAUL BARROW, Director, Toxicology, MDS Pharma Services Preclinical	170
QUESTION & ANSWER SESSION	180
TOPIC TWO: "Immunological Endpoints" FRANCOIS VERDIER, Pharm.D., Ph.D. Product Safety Assessment, Aventis Pasteur	235
TOPIC THREE: "Developmental Endpoints" JAN-WILLEM VAN DER LAAN, Ph.D. Director, Pre-Clinical Assessment Group, Medicines Evaluation Board [RIVM], The Netherlands	238
SUMMARY QUESTION & ANSWER SESSION	241

1A

MS. MILLER: I'm your lead-off

speaker this morning. I am Margaret Miller. I am with FDA's Office of Women's Health, and our office is located in the Office of the Commissioner. And our mission is to serve as a champion for women's health, both inside and outside the agency.

And it is indeed a pleasure to help sponsor this meeting. I was very pleased with the discussion yesterday, and I think we'll have more fruitful discussion today.

I would like to say that Christine Everett of our office was involved in organizing this meeting. So if you have any complaints, I'd ask you to direct them directly to her. [Laughter.]

MS. MILLER: One of the main reasons why our office came into being was to encourage the participation of women in clinical trials for products that would be used by both men and women. And the current guideline on the participation of women in clinical trials was written in 1993. And it does recommend that women participate in all phases of clinical trials, and this includes women of child-bearing

potential; that we look at the data by sex and we analyze for gender differences, to see if the product acts differently in men versus women.

Now, while we recommend the participation of women in clinical trials, we do still have concerns about fetal safety. And so the recommendation does not extend to pregnant women. So regarding the participation of pregnant women in clinical trials, this is really limited to those products which are intended to treat a condition that occurs only in pregnancy.

Well, this leaves us with a problem. Because while we are not including women in clinical trials except for those cases where it's used to treat pregnancy, we know that women get sick. Women get influenza while they're pregnant. And treating a pregnant women often confers benefit not only to her, which is our office's concern, but to the developing fetus as well. But yet, at the time of an approval we don't have information on fetal safety, or even on what health benefits or differences that product might have in a pregnant woman versus a non-pregnant woman.

To add to the problem, we have the fact in this country that about half of all pregnancies are unintended; which means many women are having therapies and different treatments without knowing they're pregnant. And at the time that they realize they're pregnant, they go back through their mind and go through all those things they've done for the past month or so. And they come in and they say, "How will these activities affect my baby?" And that's a big question for them.

So when a clinician is trying to treat a pregnant woman or a woman of childbearing potential, they really want to balance the health benefits of a product versus the safety concerns for both the fetus and the mother. And in order to do this, the agency has recognized that this is an area where we really need to do a better job in providing clinicians and women with this type of information.

One of the activities that the agency is undergoing is an effort to revise the labeling section of our products. And this has been an ongoing concern that the health care community has brought to the agency: that the label--the way it's formatted and the information that is imparted--

does not provide them with the type of information they need to make clinical decisions. So that is an ongoing effort.

But as we started in this effort, it became very clear that reformatting bad information is just bad information reformatted. And really, there needed to be a concerted effort to improve the content, or improve the information that we were putting into the pregnancy labeling.

So the past three years, our office, together with our colleagues in the centers, have been working at ways of improving the content; giving those fetal safety concerns that I've already talked about, and understanding the limitations of doing studies in pregnant women. We've tried to look at novel and creative ways of getting good information for pregnancy.

The first activity is, the office has actually funded some PK studies, doing studies in pregnant women. I'll talk a little about that.

We have created a pregnancy registry website, to encourage women to participate in ongoing pregnancy registries.

And then, the third activity, which is why we're here today, is that we're interested in: How can we do a better job of using animal models to make predictions so that we can give women good information?

Let me talk a little bit about the ethics of doing studies in pregnant women. As soon as we start talking about enrolling pregnant women in clinical trials, everybody gets this glazed look of panic, "deer in the headlight" type of approach. And I will agree that it is not as easy to do studies in pregnant women as young, healthy, male volunteers. That is a fact.

We do have ethical rules regarding the conduct of clinical trials. And they specifically address pregnant women. The basic human subject protections for federally-funded research are found in 45 CFR Part 46. Subpart A is your basic protections for all subjects. Subpart B covers the pregnant women, the fetus, and in vitro fertilization.

Let me just walk you through some of the highlights of this regulation. The first, Subpart A does allow for expedited review for something that is minimal risk. So if you have a study and you say, "Well, it really involves minimal risk

to the participants," under Subpart A you can get expedited review.

Unfortunately, if you are doing a study in vulnerable subjects—and that's children, pregnant women, prisoners, mentally disabled, or economically disadvantaged people—you cannot get expedited review. So you're in for full IRB approval when you're doing a study in pregnant women.

In addition to all the criteria under Subpart A, when you are doing a federally—funded study you have to comply with Subpart B. And Subpart B was changed about a year ago.

I'm going to talk about the new regulations.

And that says that pregnant women can give informed consent and can participate in the trial, if the following conditions are met. Now, the first is that we have done studies in non-pregnant women. And the second is that we've conducted animal studies.

Now, the regulation does not dictate that those animal studies be developmental studies. But I have taken four proposals through IRBs, and I can assure you that's what the IRB asks us. They are asking for developmental animal studies, in order to write an informed consent document

that the woman can make a decision about whether or not she wants to participate in this trial.

Finally, or next, if the research is designed to meet the health needs of the mother, and the risk to the fetus is minimal or the minimum that we can obtain with the study, then the maternal consent alone is necessary.

Also, for studies where we're going to benefit the mother and the fetus, or we're just adding to general knowledge, then material consent alone is all that's required for the woman to participate in the trial.

However, if you are designing a federally-funded research study and the aim of that study is to provide a treatment which is designed to benefit the fetus only--some type of vaccine, or you're just using the mother as a vehicle and the benefit is going to be only to the child--then you need to get consent from both the mother and the father in order for the woman to participate in the trial.

Now, I would like to mention, one of the questions we get sometimes is, we know that once we approve a product that it is going to be used by pregnant women. Why don't we

just collect the information from that study, and make decisions about fetal safety that way?

And certainly we have asked for pregnancy registries on a number of products. These are phase IV studies where, once a product is approved and it finds its way into pregnant women, we ask those women to enroll in a registry. And generally, we'd like to see them enroll after they've been exposed, but before the birth outcome is known. And this is a very good tool for collecting safety information, both on the mother and on the infant. Because we can examine those with time.

Well, what we've found out is that, while the agency has been asking for these studies for a number of years, this was the best-kept secret of women's health: that we would go to the advocacy communities; they were not aware of pregnancy registries. If you talked to women about pregnancy registries, they just did not know about this activity.

So one of the things our office has done recently is we've put together a pregnancy registry website. And this is a website that encourages women to take needed medications,

not to be scared off medications that they need to maintain their health; and then to participate in a registry. And so we have a list of all ongoing registries that are for medicines that women need to maintain their health. And it is to encourage their participation. And we also have a "Contact Us." So if you have a registry that you would like to have included on our list, you can send us an e-mail and we'll incorporate that into our registry list. So while we have tried all these tools, we come down to the fact that animal models are still going to be the main type of information that we will have for most products when they are approved. We are not likely to see women enrolling in clinical trials any time soon. And even if we wanted to, in order to give a woman informed consent, you need to have some of that animal model to base your prediction on.

And I think--and we heard some of this yesterday--that even if we had registries for everybody, we're limited as to the type of information that you can get from a registry.

You're not going to necropsy those babies and do lymph nodes. You know, it's just not going to happen.

So if you don't know what you're looking for in a registry, you're going to maybe look for major malformations.

There's problems with long-term follow-up. Really, you need the animal models to give you the signals, even to design a good registry: What should we be looking for?

So that brings me to the challenge for this group, and I know you're up for it. Because we do not want to design animal studies to make predictions for animals. Really, what the women need and what women want to know is: How do we interpret that finding in animals to the human

And certainly that is the challenge for this group. And after the discussion yesterday, I'm sure you're up for it. So I'll turn it over to Marion.

[Applause.]

situation?

DR. GRUBER: Well, I really would like to thank Peggy
Miller for these very nice, very right-on-target
introductory remarks.

And I just wanted to ask, if you throw this against the wall, does he turn into a prince? [Referring to slide of frog.]

DR. GRUBER: Okay. Well, before I start my presentation, I think I have to do some—or I was asked to inform you about the most important issue first. And that is that lunch today is in the Montecello Ballroom, again on the dining level upstairs. And I think you can also take the stairs, and don't have to wait for the elevators to go up there. The other thing I need to remind people of is to use the microphones when they have questions, and to introduce themselves.

We will make available the presentations, the slide presentations of the speakers, following this meeting of the SOT, once they have received all the slides from the speakers. We'll make them available about two weeks after this meeting. And I think we're also thinking about having an evaluation form that you can then fill out by e-mail. So having said that, and I hope I didn't--No, I forgot a lot of things. I was told to thank all the speakers and panel members yesterday for a very fruitful and helpful discussion. That has been tremendously helpful for FDA, and we think we have an idea really how to actually begin to think about guidance. Let's be careful.

And I also wanted to thank again, as Karen Midthun did yesterday, the SOT, and especially Shawn Lamb and her staff, for making this a very smooth, easy-going workshop. So thank you very much, to Shawn and her staff, for helping us with this.

So I think I'm ready then for my presentation.

REPRODUCTIVE TOXICITY ASSESSMENT

OF PREVENTIVE VACCINES

PRESENTER: MARION GRUBER, PH.D., OVRR, FDA

DR. GRUBER: So for those who don't know me yet, my name is Marion Gruber. I'm with the Office of Vaccines. And I have been actually involved over the last couple of years to try to generate policy and guidance for preclinical safety evaluation of preventive vaccines. And today's discussion will focus on reproductive toxicity assessments of preventive vaccines.

As you know, the FDA had announced in the Federal Register on September 8th the availability of a draft guidance document for industry that is entitled "Considerations for Reproductive Toxicity Studies for Preventive Vaccines for Infectious Disease Indications."

The guidance was published with the intent to provide sponsors with information regarding assessments of the reproductive toxicity potential of preventive vaccines that are indicated for maternal immunization, and to target populations that would include females of reproductive age. This document was generated and written when there was relatively little experience with performing reproductive toxicity assessments for these types of products. And there was virtually no scientific literature to really assess and address this issue.

So since publication of this guidance and since the initiation of reproductive toxicity assessments in a more systematic way for some of these preventive vaccines, there have been a number of concerns and questions raised by sponsors, by experts that need to conduct these studies, and also by CBER reviewers which are then in the position to evaluate the data.

And many of these questions and concerns are also reflected in comments that we have received from industry in response to publication of this guidance. And the suggestion was made that a discussion should take place by experts in the

field addressing reproductive toxicity studies for preventive vaccines, to further pioneer this relatively novel area.

So the goal and purpose of this second day of the workshop is then to discuss the technical aspects, the experimental designs, and the animal models for developmental or, let's say, reproductive toxicity assessments—I will get to the difference between those two in a little while—in order to reach a consensus on how to best perform these types of studies for preventive vaccines, and the type of information that can be derived from these studies, to assure that it will be relevant and useful to better assess, and perhaps predict, human risk.

So today's discussion will serve to define the scientific challenges that one is faced with when having to conduct the studies. And I hope that we will define approaches as to how to overcome these challenges.

So I think the goal needs to be to try to define the most practicable and feasible designs that can be conducted in a reasonable manner. And because of the complexity of the issues that we are facing when looking at reproductive

toxicity assessments for preventive vaccines, I don't think that we are able to get answers and reach consensus on all the aspects and questions that have been raised. But CBER is intending to revise the guidance document, after considering the comments, recommendations, and suggestions that we're going to be hearing from you today.

So the purpose of my presentation then will be to provide an overview of the past and current situations regarding immunization during pregnancy; to discuss the regulatory considerations and concerns regarding reproductive tox assessments for vaccines, and why we think that these studies are necessary; to provide an overview of the current version of the guidance document, so that we're all going to be on the same page; and to summarize the comments that we have been receiving from industry in response to publication of this guidance.

I will finish this presentation with questions that could form the basis for our discussions this afternoon.

Vaccination of pregnant women to protect mother and infant from infectious disease has been practiced worldwide for decades. And the most famous example perhaps is maternal

immunization with tetanus toxoid vaccine, that has been very successful in preventing neonatal tetanus in developing countries.

Polio vaccine was given routinely to pregnant women in the United States in the late 1950s and the early '60s. And other vaccines were administered to pregnant women, especially in outbreak situations. And the one worth mentioning I think is the small pox vaccine; which is why today we have a lot of clinical experience and clinical data in assessing the clinical experience when you use small pox vaccine in immunizing pregnant women. And of course, these data I think are still going to be paramount in deciding the safety of even the new candidate vaccines that we have today.

Now, most vaccines that are currently licensed in the United States are not indicated for use during pregnancy. But depending on the vaccine, vaccination programs do frequently include pregnant women. For example, as Peggy addressed, the inactivated flu vaccines are often recommended for use in pregnant women in their second and

third trimester of pregnancy. Those women were at special risk for serious consequences from the flu.

In addition, there are also a number of vaccines that are recommended for use in pregnant women. This would include hepatitis A and B vaccines and meningococcal vaccines in situations of epidemic and endemic exposure. And these are recommended by the Advisory Committee for Immunization Practices.

The general approach of the Advisory Committee for

Immunization Practices has been that the benefit of

vaccination of pregnant women usually outweighs the risk

when the risk for disease exposure is high, when infection

poses a special risk to mother and fetus, and the vaccine

is unlikely to cause harm.

Now, maternal immunization provides a strategy to protect young infants from severe infectious diseases through the passive antibody transfer from mother to fetus. And maternal immunization trials have been and are currently conducted in the United States to assess the safety and tolerability of vaccines against pathogens such as

respiratory syncytial virus, streptococcus pneumonia, and group B strep.

And there are a number of controlled clinical trials that have been conducted. And they provide evidence that maternal immunization with at least inactivated vaccine antigens, including haemophilus influenza type B and pneumococcal polysaccharide vaccines, appear to be well tolerated in the pregnant women and in their offspring.

But I think what needs to be stressed is that these studies were usually not powered or designed to detect rare adverse events, or to assess long-term follow-up of the offspring.

Even though there may not be hard evidence of reproductive toxic effects in humans caused by the use of currently approved vaccines, when assessing the preclinical and clinical safety of a candidate vaccine regulatory considerations take into account not only past experience, but also theoretical concerns.

So the regulatory approach does not presume a product to be safe until directly tested. And that is because the potential for an unexpected clinical adverse event can never be ruled out.

And addressing these concerns using the best available methods that are available to us is critical; in particular, as mentioned yesterday, in a public climate where the expectation is no risk, as the vaccination benefit may not be immediately obvious because of the relative absence of disease in our society.

The current situation is, as Peggy pointed out, unless the vaccine is specifically indicated for maternal immunization—that is, indicated for immunization of pregnant women—no data are collected regarding the vaccine's safety in pregnant women during the pre-licensure phase of a vaccine.

But as more women participate in clinical trials, and as more preventive vaccines are being developed for adolescents and adults--and as an example, I'd like to mention human papilloma virus vaccine or HIV vaccine--there is increased concern for the unintentional exposure of an embryo or fetus before information is available regarding the potential risk versus benefit of the vaccine in general.

Also, use of licensed vaccines in females of childbearing potential would likely result in the inadvertent exposure of pregnant women and their fetuses to the vaccine, especially if you consider that about half of the pregnancies in this country are unintended. So it would be unlikely that a vaccine exposure would be avoided in these pregnancies prior to their clinical recognition.

Also, there is the situation that following approval vaccines which do not have specific regulatory approval may be recommended for use during pregnancy by public health policy makers.

Now, the potential risks that are involved in prenatal immunization programs overlap with those that we have been discussing yesterday. And I would include adverse events caused by the constituents of the vaccine; that is, potential intrinsic toxic properties of the vaccine antigens, stabilizers, adjuvants, preservatives, and also potential adverse events that are caused by the immune response.

So it is conceivable that an immune modulation in the mother caused by vaccination during pregnancy could

influence embryo/fetal development. And recent studies in animal models provide evidence for a maternally-mediated mechanism influencing fetal development. And we're going to be hearing some of these data today.

In addition, maternal immune modulation could influence the development of the immune system of the immature organism.

And lastly, maternal immune modulation has been shown to influence the course and outcome of pregnancy.

In contrast to perhaps what we've have, or what the situation was in the last couple of decades, in our days we have a broad range of vaccines that are currently in clinical trials. And they have been discussed yesterday, and they are listed on this slide.

And these products are formulated with novel adjuvants, excipients, stabilizers, and preservatives. And they are frequently administered by new routes of administration.

And for some of these products there is little preclinical and clinical experience.

And many of these products are indicated for adolescents and adults, which of course includes females of reproductive age. And some of them are specifically

indicated for the prevention of sexually-transmitted diseases. And we think that underscores the need for a more systematic approach to preclinical toxicity assessments, including reproductive toxicity assessments. Now, until recently, few or no licensed vaccines have been tested for reproductive and developmental toxicity in animals prior to their use in humans. But there is concern that there are no data to address developmental risks in pregnant women or women of reproductive age at the time of licensure of a preventive vaccine product.

And reproductive toxicity studies in animal models may offer one approach to identify potential developmental hazards. And we think that they are justified, as the target population for vaccines often includes women in their reproductive years who may become pregnant during the time frame of vaccinations; because clinicians are not infrequently confronted with situations where immunization of pregnant women may be beneficial. And lastly, vaccine labeling must have a statement about use during pregnancy. And as Peggy discussed, the FDA has a current initiative ongoing where it is proposing to amend its regulations

concerning the format and content of the pregnancy subsection of the labeling for human prescription drugs and biological products.

And this rule would not only eliminate the current pregnancy categories, but the rule would require labeling to include a summary assessment of the risk of using a product during pregnancy and lactation. And it would require a broader discussion of the data—and that is animal and human—that would underlie the evaluation of risks associated with a product.

And for all of these reasons that I've discussed, we have developed a policy for reproductive tox studies for vaccines that are indicated for maternal immunization and immunization of women of childbearing potential. And we have published this draft guidance document in September of 2000.

And I would like to now turn to providing you an overview of the guideline, as this is going to be the subject of our discussion this afternoon. And I also wanted to give you an idea about the comments that we have received from you in response to publication of the guideline.

And the way I thought I'm going to do it is I'm going to divide the guidance into different sections. And I will tell you about what the guidance states, and then at the same time, what comments we received from industry. So that we're going to be all on the same page in discussing the issues this afternoon.

You should note that industry comments represent several different points of view. And there are going to be apparent contradictions. But I decided to present those to you, to give you a true representation of the various issues and concerns and questions that have been raised. And I think this will certainly spark a lot of discussion, but I would like actually for you to hold your comments and questions until this afternoon, because this is when we are looking at the different issues.

Now, starting with the guidance and the section on general considerations, the guidance states that each vaccine needs to be evaluated on a case-by-case basis, where product features and intended clinical use need to be taken into account when you design developmental tox studies.

If you have clinical experience that is derived from immunization of pregnant women, then this experience or the data and the outcome may be considered for any potential application in the design of the reproductive tox study. All data that you may have from acute or repeat-dose preclinical tox studies should be reviewed for their possible contribution to the interpretation of any adverse developmental effect that you may observe in the developmental tox study. An example provided was fetal toxicity secondary to maternal toxicity.

The guidance also states that sponsors should use as a point of reference in the design of reproductive tox studies the ICHS5A guidance document published in '94, that is entitled "Guideline on Detection of Toxicity to Reproduction for Medicinal Products."

And since some special concerns are effects of vaccine exposure on the developing fetus, CBER had recommended studies to evaluate the effects on embryo/fetal development, so that the vaccine is administered during the period of organogenesis. That means that the female should be exposed to the vaccine from implantation to birth. And

these studies are defined as stages "C" and "D" in the ICHS5A document.

But as we know with vaccines, many times modifications to dosing schedules are necessary to allow an antibody response to occur in an animal model. And so we also included in the guidance that priming doses may need to be administered prior to conception.

And we had also recommended to extend the stages "C" and "D" evaluations to also look at the period between birth and weaning, defined as stage "E" in the ICHS5A document, so that mother and offspring can be followed postnatally. So what did industry have to say? Actually, the majority of comments supported that, in principle, developmental tox studies for preventive vaccines are needed for vaccines that are indicated for maternal immunization and females of reproductive age; and that thus, efforts should be made to assess the risks of vaccination during pregnancy in animal models.

At the same time, however, we did receive comments questioning the relevance of developmental and reproductive tox assessments in animal models for preventive vaccimes.

And among the major hurdles cited were the species specificity of the immune response combined with species specificity of developmental time lines in animals versus humans. And this would make the characterization of a relevant animal model very difficult and would, de facto, question the value of developmental tox studies for preventive vaccines.

Industry also thought that the guidance should clearly indicate that developmental studies to assess the potential adverse events on the female and developing conceptus from implantation through birth and weaning are sufficient, and that fertility studies and post-weaning assessments are not required.

Furthermore, the comment was made that it was not clear whether some of the endpoints are consistent with ICH reproductive toxicity guidelines. And we were asked to really rename the developmental endpoints stated in our guidance for consistency with the ICH document.

Then it was felt that the title of the document was somewhat broader than its scope, as classical reproductive toxicity assessments do include studies to assess impact on

fertility and post-weaning assessments. And the suggestion was made for the document to refer to embryo/fetal toxicity, rather than to reproductive toxicity. But additional guidance on the aspects of female fertility studies was requested.

Turning back to the guidance document, the section on immunological parameters and follow-up, the guidance states that the reproductive tox studies should be designed to include the detection of antibody production in the pregnant animal, and to also look at the feasibility of antibody transfer from the pregnant female to the fetus through antibody measurements in the fetus and newborn. We also thought that the antibody response in the fetus should be studied, looking at presence, persistence, and effects; including potential cross-reactivities with the antibodies induced in the pregnant mothers with fetal tissues.

And the guidance further stated that these studies should include an in-life phase, as I mentioned; a follow-up of the pups from birth to weaning, to evaluate further on the maternal antibody transfer to offspring; the magnitude and

even persistence of antibodies in newborn pups; if you have presence of antibody in milk; and the effects of antibodies in the newborn. Potential interaction with host tissue was named again. We also listed some other endpoints, such as neonate adaptation to extra-uterine life, and the study of maternal behavior.

Industry says that in general there is agreement that it is important to demonstrate an immune response to the vaccine in the dam, to demonstrate exposure. And the ability to detect an antibody transfer from the dam to the newborn was viewed as a key issue by some. And the suggestion was made that the proper species for a developmental tox study be validated in a preliminary study with only immunological endpoints.

But in general, it was felt that an extensive characterization of antibody responses in the dam and the fetus and neonates was not warranted, especially if no developmental toxicity is observed. So it should not be necessary to evaluate the immune response in greater detail.

The rationale for kinetics assessments was questioned, especially when the vaccine is not intended for pregnant individuals. Kinetics assessments in particular were viewed as challenging, as one litter would be required per time to obtain enough serum to really measure the immune response. And this would impact sample size. And also, there would be a lack of validated assay for measuring immune functions in newborns. If we would indeed request kinetics studies, we should really address how long-term kinetics should be followed.

One comment questioned the "appropriate immune response" in an animal model, as antibody generation would be only one factor. Cytokines, cell-mediated immune responses could also result potentially in toxic effects; each with their own specific time lines.

Furthermore, the evaluation of potential cross-reactivity of maternal antibody with fetal tissue was viewed as an excessive burden, and not justified as long as no malformations or other effects would be observed.

The argument was made that if an antibody would have an adverse effect on fetal development, then it would likely

be detected as effects on viability, growth, function, or other fetal abnormalities.

It was, however, suggested to include perhaps a broader histopathology assessment in developmental toxicity studies for preventive vaccines, as a measure to assess potential effects of maternal antibody on fetus or newborn animal. And the suggestion was also made to conduct antibody assessments, including potential cross-reactivity assessments of maternal antibody with fetal tissue, as a tiered evaluation; that is, if you observed developmental toxicity, then you would conduct further studies to look at the mechanism of the effect.

Guidance was sought by industry on how long the offspring should be followed post-parturition. And we were asked to specify the end of the postnatal period for the most frequently used species.

Furthermore, a comment was made that body weight is the best indicator for pre-weaning developments, and functional studies are not commonly conducted in pre-weaning pups, due to the limited repertoire of responses and difficulty in the quantitation of those responses.

Let's discuss another very easy issue, and that is the dose. Reproductive tox studies should include a dose response component, states the guidance, to be able to assess potential toxic effects that a particular dose may have on the dam or the fetus, to define a safe dose, and to look at the dose that is able to mount or to induce an immune response.

The guidance states the dosing regimen should include a full human dose equivalent, and that a dose scaled down because of feasibility considerations should ordinarily still exceed the intended human dose by at least fifteenfold on a milligram-per-kilogram base.

The following comments were provided by industry on the issue of dosing. Dose range is not warranted, but the administered dose should induce an immune response in the species selected, and the dose should exceed the human dose on a milligram-per-kilogram base.

It was felt that the principles outlined in the documents for dose selection would refer to the notion of a classical dose response; whereas many immune-based reactions would not follow such a relationship. And also, the

pharmacodynamics of immune reactions would be difficult to scale between an animal species and a human.

So with vaccines there may be also limits to the amount that can be administered, and frequently dose levels are often based on the volume of the material.

Then we were asked to clarify why we asked for an at least fifteen-fold greater than the human dose on a milligram-per-kilogram base. And there was one suggestion that doses may be defined in separate experiments in non-pregnant animals. But there seemed to be general agreement to use a single high human dose equivalent, if possible, for these studies.

What about immunization scheduling and exposure? The immunization interval and frequency of immunization, states the guidance, should be based on the clinically proposed immunization interval whereby a compressed scheduled would need to be allowed.

So episodic dosing would be more relevant than daily dosing, because it would mimic the clinically administered immunization schedule. The guidance states that modifications to dosing frequency may be necessary,

depending on the kinetics of the antibody that is induced in the species, and also, when considering the length of gestation of the particular animal model.

We had only one comment from industry regarding immunization schedule and exposure, and that was loaded. The relationship of dosing to developmental timing will be one of the most difficult aspects in designing developmental tox studies.

The point was made that there are potentially different responses in the host to initial priming doses, versus subsequent doses, versus eventually booster dosing. And the differences in responses could be reflected in different immune responses, such as antibody production, cytokine production, cell-mediated immunity. This would be compounded by species-specific developmental time lines. And having to tease these various issues out would make a study become unreasonably large and complex.

Animal models. The guidance document states that every effort should be made to select the relevant animal model. And we define it as the vaccine should be able to elicit an immune response in the animals.

The guidance states that the reproductive tox studies should not necessarily, or does not necessarily need to be conducted in the traditional species that are commonly used for reproductive tox studies—that is, rats and rabbits. And there is also no need for a specific requirement for the routine use of two species, like one rodent and one non-rodent. But it would be important to provide a rationale for the choice of the animal model that is proposed.

The guidance document further states that if there is no relevant animal model, then reproductive studies should be done regardless, to assess the intrinsic potential of vaccine antigen. And I think we need to really discuss this this afternoon: what to do if we don't have a relevant animal model available to us.

Industry concurred that only one species should be required for developmental toxicity studies, and that the species should be able to mount an immune response to the vaccine. However, comments were made that we have only a limited number of animal models available, especially if we would include postnatal assessments, and especially when you

consider species that have reliable background data and for which we have a lot of historical experience. And the question was raised of how to validate non-traditional species, and how much historical background data would be needed.

In terms of vaccine product class, or vaccine category, product category, the guidance states or recommends that reproductive tox studies be performed for every final clinical vaccine formulation that is used in studies that enroll pregnant women.

And in order to avoid having to perform multiple studies, the suggestion was made to really conduct phase I and II studies—of course, in non-pregnant individuals—and to only advance the most promising vaccine formulation in studies that enroll pregnant women.

Furthermore, the guidance discussed that the need to repeat a reproductive tox study for a vaccine product that is similar to a product for which a reproductive study has been done--and the example listed was the nine versus 11-valent pneumococcal conjugate vaccine--that would need to be decided on a case-by-case basis, and would depend on

several criteria, such as methods of manufacture and the availability of other preclinical and clinical data. Industry wanted clarification on how this document would be applied to therapeutic vaccines, as many therapeutic vaccines under development would be intended for use in adolescents and adults. And the guidance also does not address how it would be applied to investigational vaccines, as well as those that are already licensed. The suggestion was made to apply reproductive toxicity assessments to those new vaccine candidates only for which the natural history and epidemiology of the "Y"-type disease would suggest untold effects on females of reproductive age, abiogenesis, and newborn development. Industry wanted clarification on the type of changes made to the product that would require additional studies. And the point that was made was that several changes are made to the product during clinical development, and therefore not all of them should require additional preclinical studies.

We were also asked to clarify whether all vaccine formulations would need to undergo developmental tox

testing. Often, pivotal studies are conducted with the final formulation, but subsequent optimization and formulations are made, and the need for additional preclinical trials in such cases should be evaluated on a case-by-case basis.

Also, industry felt that combination vaccines under development that are composed of antigens that are already included in licensed vaccines should really not be subject to requirements for reproductive toxicity studies.

And one of the last points made in the guidance was that reproductive tox studies should be conducted for vaccines that are indicated for adolescents and adults and for vaccines which are indicated or may have the potential to be indicated for immunization of pregnant women, but-[Tape Change.]

1в

DR. GRUBER: --that is specifically indicated for immunization of pregnant women would need to be available prior to the initiation of any clinical trial that would enroll pregnant women. But if you have a vaccine that is indicated for adolescents and adults, it may be okay to include women of childbearing potential into clinical

trials without reproductive tox studies, provided that appropriate precautions are taken, such as pregnancy testing and use of birth control.

And for vaccines for these types of target populations, data from reproductive tox studies could be conducted as late as post-pivotal trial or concurrently with the pivotal trial. And then the data should be submitted with the biologics license application.

Industry said that the guidance needs to more explicitly address the target population to which the guidance would apply. The comment was made that the many vaccines already licensed or under development for children less than five years of age should not be subject to the guidance.

And also, the guidelines would cover vaccines that are intended for maternal immunization, as well as unintentional exposure, but the read-out and follow-up of the offspring could be expected to be different in both situations. And this should be recognized in the quideline.

And I think it may be worth spending a few minutes discussing if the read-outs for these different

populations—let's say, maternal immunization, or unintentional exposure—are indeed different; especially when you consider vaccination programs that are currently being discussed that target immunization of women of reproductive age with the intent to prevent perinatal infectious disease in the offspring when the woman gets pregnant or is pregnant.

And lastly, there was a request for clarifying administrative procedures.

Now, the guidance for industry document also discussed or recommended that pregnancy registries should be conducted. And we received actually very positive comments from industry. But since it's not the scope of today's discussion, I am going to be skipping this.

And I would like to conclude this overview of the guidance and comments received from industry with questions that I think we should try to address this afternoon. And I formulated these questions based on the comments and concerns that we received from industry, and also comments and concerns that were raised in looking at data from

reproductive toxicity studies and that we had in discussion with sponsors.

And in random order, the questions are:

In addition to endpoints outlined—and you have them in your background package—in addition to endpoints outlined in the ICHS5A document, what additional parameters should be evaluated? Thinking of immunological parameters, histopathology, functional assessment. Can you think of more?

If you focus on immunological parameters, what should be focused on? What should be assessed? Are antibodies enough? Do we need to look at cell-mediated immune responses, cytokines? And how far should we even assess potential interaction with fetal tissues? Should there be kinetic assessments?

What is the extent of assessments in the dam versus fetus versus newborn? And should we consider a tiered testing approach that was suggested by industry?

How should we assess the potential for developmental immunotoxicology, given the species-specific differences in immune system maturation, species-specific differences in

the maternal cross-placental antibody transfer, and perhaps species-specific immune responses in general?

Should reproductive tox assessments remain essentially restricted to pre- and postnatal developmental studies?

That is, should there be no fertility and post-weaning assessments?

What parameters should be used to assess pre-weaning development? Looking at body weight, functional assessments, other issues?

How do we deal with the dosing?

How do we choose the immunization interval, keeping in mind the relationship of dosing to developmental time lines?

And should developmental tox studies differ in terms of read-outs and follow-up depending on the vaccine's indication; that is, maternal immunization, versus an indication for adolescents and adults that includes females of reproductive age?

And finally, what constitutes a relevant animal model?

What factors should go into the equation in terms of

deciding what a relevant animal model is? Should we only

look at antibody response? Do we need to consider other issues?

How do we deal with species-specific factors, the use of non-traditional species, the availability of background data, and the practicability and availability of species?

And what alternate methods do we have available to us to assess and predict human risk if a relevant animal model is not available?

And finally, should reproductive tox assessments be

required for vaccines that belong to a product class for which a large body of clinical data exists?

And that would conclude my overview of the guidelines. And we have scheduled discussions this afternoon. And we basically did a somewhat arbitrary division, where we said, okay, we're going to start discussing study designs for developmental tox studies; we're going to look at

But we realize that there is probably going to be a big overlap, and that one issue can probably not be discussed

immunotoxicity endpoints; developmental endpoints; and we

wanted to finish with animal models.

without the other. And so when we discuss this this afternoon, I think we need to keep this in mind.

What I would like to do this afternoon is really put up these questions again. I realize we may not be able to answer them all, but indeed if we want to revise the guidance, we need to try to reach consensus on some of these issues that I have discussed this morning.

So it is 9:30 right now. I think right now we are right on schedule. If there are no pressing issues that require clarification of my talk--again, I said that we need to really discuss the issues this afternoon--I can introduce the next speaker. If not, I can allow one or two questions.

[No Response.]

DR. GRUBER: Good. So I guess my presentation was sufficiently clear.

[Applause.]

DR. GRUBER: Well, it is a great honor to introduce to you the next speaker. It's Dr. Richard Insel, who is the Director of the Center for Human Genetics and Molecular Pediatric Diseases in the AAB Institute of Biomedical

Sciences. And Dr. Insel is the professor of pediatrics and microbiology and immunology at the University of Rochester School of Medicine.

His early research focused on the development and immunogenicity of haemophilus influenza B conjugate vaccines. And he was part of the research team that developed conjugate vaccines for infants, which of course, as you know, have eradicated infant bacterial disease from invasive haemophilus influenza and eliminated the most common cause of meningitis in children in the United States.

Together with David Smith and Porter Anderson, Dr. Insel was the scientific founder of Praxis Biologics, the company that first developed haemophilus conjugate vaccine for infants. And Dr. Insel has studied the use of vaccines during the third trimester of human pregnancy.

His current research focuses on the genetic regulation of the generation of B lymphocytes, memory B cells, and plasma cells. And he is investigating the network of protein pathways that regulate human lymphocyte development and

MILLER REPORTING CO., INC. 735 8th STREET, S.E. WASHINGTON, D.C. 20003-2802 (202) 546-6666

differentiation.

Ladies and gentlemen, Dr. Insel.

[Applause.]

HUMAN T AND B CELL DEVELOPMENT

PRESENTER: RICHARD INSEL, PH.D.

UNIV. OF ROCHESTER, SCHOOL OF MEDICINE

DR. INSEL: Marion, thank you.

We're going to change directions a little bit here this morning in this next talk. What I'm going to do is I'm going to provide a relatively simple overview of how the immune system develops. I'll then discuss the ages at which development occurs in the human fetus. We'll look at the maternal contributions to immunity in utero. And I want to just provide some brief glimpses of evidence that the fetus can make an active immune response.

What the first slide shows is, I like to think of the immune system as composed of two really major components: what we call "innate immunity," and adaptive immunity. And innate immunity exists to immediately and quickly recognize that the host has been invaded, that there is a danger on board, there's something foreign on board; and responds quickly to that response with either a cellular

response, as shown here with, in this case, antigen presenting cells, APC's--one example of which would be professional dendritic cells. And they respond to contain that insult, and will invoke an inflammatory response to contain and destroy that insult.

And in addition, the innate immune system will capture this antigen and present this antigen to what we call the "adaptive immune system." The adaptive immune system is made up also of cells and proteins. And the major components, as all of you know, are lymphocytes. And they are the T lymphocytes and B lymphocytes.

Lymphocytes can generate an antigen-specific immune response which is high in specificity. It may be delayed, in contrast to innate immunity. And with that immune response, we generate an effective response composed of a cellular response; or a soluble response in the case of antibody, the product of B lymphocytes, to eliminate and bind to that antigen, eliminate that antigen. And in addition, we induce memory, to remember that encounter in case of future exposure to that particular antigen.

Now, lymphocytes—these T lymphocytes and B lymphocytes—as is true of 11 different other lineages, all derive from a hematopoietic stem cell. This stem cell is potent, and it has regenerative capacities, and exists in adults in the bone marrow.

This stem cell gives rise to either a common myeloid progenitor or a common lymphoid progenitor. The common myeloid progenitor gives rise to seven different cell lineages. The common lymphoid progenitor gives rise to B lymphocytes; T lymphocytes; NK, or natural killer cells; or dendritic cells.

Now, it's a little bit more complicated than this. What we have is we have our hematopoietic stem cell, giving rise to our lymphoid progenitor here, and either giving rise to B lymphocytes on the left-hand side, or T lymphocytes on the right-hand side.

And lymphocyte development occurs in a very well-defined pathway, with discrete stages of development or differentiation. These stages are characterized by changes in cell surface markers, and changes in gene expression.

So on the left, if we look at B cell development, which in the adult is going on in the bone marrow, we have initially a progenitor B cell that gives rise to a pre or precursor B cell that has cytoplasmic "U" [ph], that then gives rise to an immature B cell which has on its surface IgM, and then giving rise to the mature B cell which has IgM and IgD.

That cell then leaves the bone marrow to move to the periphery.

All of this development in the bone marrow occurs in an antigen independent fashion. In the periphery, if that mature B cell comes in contact with antigen, and in the present of T cell help, that B cell differentiates, proliferates—and generally it's an antibody—secreting plasma cell—and can isotope switch to become an IgG, IgA, or IgE B cell and plasma cell.

In addition, in the periphery that B cell can undergo somatic hypermutation, that gives rise to high-affinity antibody responses. All of this is occurring in secondary lymphoid organs in the periphery in the germinal center. Somewhere on the T cell side, on the right here as we see, we also have these individual discrete stages. T cell

development, in contrast to B cell development that's going on in the bone marrow, is going on in the thymus. And what we have is T cells passing through well-defined stages of progenitor T cells; precursor or pre T cells; to become an immature T cell which expresses double-positive, CD4 positive, CD8 positive T cells; to give rise to a mature single-positive T cell which is either CD8 or CD4, which leaves the thymus and moves to the periphery.

So in a very simple way, this is how development occurs, either in the bone marrow for B cell development, or in the thymus for T cell development.

Now, with each of those stages of development, there are certain decisions that have to be made. And I'm only going to give you really some take-home messages here. What's happening as we move from this hematopoietic stem cell to this multipotent progenitor, to this common lymphoid progenitor, in this case giving rise to stages of B cell development associated with changes of surface markers—in the case of B cell development, changes of immunoglobulin, gene rearrangement—there's also changes in gene expression.

And these changes of gene expression exist to make certain major decisions. One of the first decisions that has to be made is to become a lymphoid lineage cell. And what we have here is a decision that's being made with this common lymphoid progenitor for lymphoid lineage specification.

What that decision really represents is the extinguishing of multiple genes that are being expressed at extremely low levels, as well as the onset of new gene expression and up regulation of other genes being expressed. What one is doing is honing down lymphoid and turning up myeloid development.

At the next stage when it moves into the B cell stage of things, extinguishes T cell development, one has what we call B cell lineage specification associated with onset of expression of new transcription factors.

And then last, we make finally a commitment, whether it be to B cell lineage commitment or to T cell lineage commitment, associated with expression of unique transcription factors.

And in the case of B cell development, we know that the gene PAX-5 and its product BSAP is involved in B cell

lineage commitment which is associated with onset of CD19 expression and onset of VDJ rearrangement.

Thus, with these development switches, what we have is unique genes making decisions for specification, and then ultimately commitment to that particular lineage.

Now, let's just turn to some very practical things as far as when does development occur. And this slide just illustrates that we have initially hematopoiesis occurring in the human fetus outside the embryo--it's in the yolk sac outside the embryo--occurring quite early, at embryonic day 18.

Hematopoiesis then switches at approximately embryonic day 40 to the fetal liver. And we begin what we call "definitive hematopoiesis," which is characterized by enucleated red blood cells, as well as production of adult hemoglobin. We then have hematopoiesis occurring in the bone marrow at approximately 12 weeks of gestation.

Lymphocyte development does not occur with primitive hematopoiesis. It only begins with definitive hematopoiesis, beginning at approximately six weeks of age, and beginning in the fetal liver.

It will then move on from the fetal liver, as I'll show you in the next slide, to the bone marrow. So lymphocyte development begins at around six weeks of age in the fetal liver, moving into the bone marrow at approximately 12 weeks of age.

This slide also illustrates on the right contrasting the human situation to the mouse situation. And one should immediately see some interesting differences.

Mouse development occurs much later in comparison to human development, in comparison to the total length of gestation of approximately 20 days. One doesn't see fetal liver hematopoiesis or lymphoid development until about halfway through the gestation period, and one doesn't see bone marrow development until three-quarters of the way through gestation; in contrast to the earlier development in man. Now, this transition from fetal liver to bone marrow for definitive hematopoiesis as well as lymphoid development is not as simple as this. But as shown on the slide, it's really a continuum. What one has is, approximately at six weeks of age, the onset of fetal liver development, of lymphocytes and hematopoiesis, which gradually peaks at

about three months of age, and then tails off and is extinguished by approximately 30 to 35 weeks of age. It is gone by the time of birth.

The bone marrow hematopoiesis and lymphopoiesis begins at approximately three months of age, and now in its primacy is more important than fetal liver hematopoiesis or lymphoid development by five months of age. And the bone marrow will continue to be the major site of lymphopoiesis and hematopoiesis throughout the third trimester, and is the sole site of hematopoiesis and B cell development in postnatal life.

Now, the way I like to think of developmental stages in man is illustrated on this slide that was prepared by Harry Schroeder, from the University of Alabama. And what he's done here is divided up development into first, second, and third trimesters. This is for the human side of things. And as a generalization, with first trimester what's going on is we're accumulating lymphocytes. T lymphocytes are developing, B lymphocytes are developing. So we see this liver development, liver lymphopoiesis occurring, around six weeks of age, and then trailing off.

We have bone marrow development, beginning at approximately 12 weeks of age, and becoming the major site of hematopoietic stem cell development. That's where the common lymphoid progenitor will be. And it will remain the site of B cell development.

We have the thymus beginning to become developed at around six to seven weeks of age in this first trimester.

And by the end of the first trimester, we have T cells and B cells that are mature—and I'll show you some data in a second—at the end of that first trimester. And we have all the players really set up.

The second trimester is associated with really peripheralization of these cells into secondary lymphoid organs. And so we have secondary lymphoid organ organization beginning. By the end of the second trimester, we have had lymphoid organs developed. We have them populated. And we have a relatively intact immune system in the human.

The third trimester is associated with further organization of those lymphoid organs. But what we have primarily is an increase in cellularity—an increased number of cells—and

some increase in diversity of the repertoire. But the immune system in man is pretty much intact by the end of that second trimester.

Now, if we walk through and we look, what we'll now do is look at B cell development, then we'll look at T cell development. So this slide just begins to summarize human B lymphocyte development.

So as I mentioned, at six weeks of age in the fetal liver we have hematopoietic stem cells. At approximately one to two weeks later, we begin to see B cell precursors, these progenitor B cells and these pre or precursor B cells now appearing in the fetal liver.

Approximately two weeks after that, we begin to see IgM positive B cells. And at about two weeks after that, those IgM positive B cells, which are considered immature B cells, now acquire IgD. So they're mature IgM positive, IgD positive mature B cells. We now see IgG positive B cells. And the ratio of progenitor and precursor B cells to B cells is approximately two to one.

If one cultures those fetal liver B cells, they can function, and they can be activated to secrete

immunoglobulin. And one is beginning to see at the end of that first trimester peripheralization of those fetal liver B cells to the rest of the body.

And one then sees at that time bone marrow development, where we're seeing now hematopoietic stem cells in the bone marrow—or presumably, hematopoietic stem cells in the bone marrow. It's very difficult to identify hematopoietic stem cells. And we're seeing both pre B cells and B cells now developing in the bone marrow. And the bone marrow is becoming that site.

In the second trimester, by 15 weeks, the percentage of B cells in the spleen, lymph nodes, and blood is equal to what we see in postnatal life. And so you can see how this is very early in the development we've acquired now numbers very similar to what is happening in postnatal development. At 18 to 20 weeks, we see primary follicles in secondary lymphoid organs, such as lymph nodes in the intestine. A few weeks later, we see primary follicles in the spleen. And then what we see in the third trimester is loss of lymphopoiesis in the fetal liver, and the bone marrow becomes the primary site.

So that's B cell development. Let's take a look at T cell development. The thymus forms at approximately six weeks from contributions from the third pharential [ph] pouch, branchioclast [ph], as well as neurocrest [ph] elements. We see thymic precursors, progenitors, populating that thymus initially at approximately seven weeks. Those cells can initially be seen in the fetal liver at seven weeks, and they begin to repopulate in small numbers the thymus at about that time.

Population increases as the thymus becomes more vascularized at about eight weeks. And by ten weeks, one can see real thymic organization, where the thymus can be discerned into a cortical region as well as a medullary region with true demarcation.

By 12 weeks of age, at the end of that first trimester, we have double-positive, CD4 positive, CD8 positive, receptor bearing thymacytes. They are functional. They can proliferate to either foreign cells in an allogeneic reaction, and they can proliferate to mytogins, such as phytohemoglutinae [ph].

And by 14 weeks, we're seeing Hassels [ph] corpuscles form. And by 15 weeks, the subsets in the thymus now are very similar to what we find in the newborn. The T cells begin to emigrate to the periphery, and begin to localize in the spleen. So very similar to what we saw with B cell development, by 15 weeks we're seeing this marked peripheralization. So this is early on in that second trimester.

At 24 weeks, near close to the end of the second trimester, if one looks at the repertoire, based on looking at cord blood of prematurely born infants, one finds that the V-Beta family usage--this V-Beta is one of the genes that encodes one of the T cell receptors that's encoded by the Alpha and Beta chain--one finds that the diversity of V-Beta usage is identical--as far as proportion of V-Beta families being used, is very similar to what's used in the adult.

The CBR3 [ph] size is skewed. And that's because of the lack or the paucity of [inaudible] addition, due to a lack or low levels of the enzyme TDT, terminal deoxynucleotidal transferase. But the bottom line is, we have a fairly

diverse repertoire, even at the end of that second trimester.

And the third trimester is associated with increased cellularity in the thymus. We see some increased diversification, with increased CBR3 size. And we see increasing cells in the periphery. So the third trimester is primarily associated with expanding those cells that are there at that second trimester.

Now, if one looks at the major peripheral lymphoid organ, the spleen, one finds by seven to eight weeks one can begin to see a spleen, and one can begin to see a few lymphocytes there. And by 15 weeks, one has in that spleen T cells, B cells, as well as IgM plasma cells.

At 16 weeks, one can see T cells localizing in what we call the periarterial lymphoid sheath, which is a correct localization for T cells. A week later, you can see follicular dendritic cells; a few weeks later after that, IgG plasma cells. And then one can see at the end of that second trimester primitive B cell follicles with follicular dendritic cells. So all the organization is there by the end of that second trimester.

Mature follicles are seen at 30 weeks. But one does not see germinal centers until after birth. And that's because one needs exposure to the outside world with activation of the innate immune response to get germinal center development.

So we've just looked at cellular contribution in the fetus to immune development. What I want to turn to now is, as all of you appreciate, the fetus also is bestowed with maternal immunoglobulin. Of the isotypes, IgG is the only isotype that crosses the placenta. Passive transport begins in the first trimester, quite early. Active transport begins in the second trimester, and it picks up in activity near the end of that second trimester.

A prematurely born infant who is born at 30 weeks gestation will have an IgG level of approximately half of a full-term-level infant. And a full-term newborn will have an IgG level greater than maternal levels of IgG, because of this active transport.

Although all IgG isotype subclasses can cross the placenta,
IgG1 preferentially is transported. And thus, when one
looks at full-term infants often the level of IgG1 is

higher in the newborn compared to the mother. The IgG2 subclass is not transported as well. IgG3 and IgG4 are intermediate, between IgG1 and IgG2, and being transported. Now, with transport of immunoglobulin, one has to ask:

What are the consequences of maternal antibody? Can that affect the response of the newborn or infant to immunization? And as all of you appreciate, we know that maternal antibody can inhibit replication of live viral vaccines. And this has been shown with measles viral vaccine. This is not the sole reason that infants respond poorly to measles vaccine administered in the first year of life.

But even with killed antigens, we know that maternal antibody can decrease active antibody responses of the infant to immunization with killed antigen vaccines.

This may work through one of several mechanisms, such as redirecting antibody, redirecting antigen away from antigen presenting cells. Antibody may alter antigen processing and presentation by the antigen presenting cell. And one can also inhibit B cell responses secondary to antigen antibody complexes which can send an inhibitory signal to

the B cells through co-stimulation of surface immunoglobulin and the FC gamma R2 [ph] on the B cell surface. So antibodies from the mother may suppress infant antibody responses. And one must keep that in mind.

In addition, one also has to appreciate a subject that was discussed yesterday by Dr. Lambert: the possibility of auto-antibody production. And we know that with transfer of immunoglobulins across the placenta, if the mother has auto-antibodies those may be transported across the placenta to the fetus, and may give rise to symptomatic disease. Thus, mothers with lupus who have anti-ro [ph] and anti-la [ph] antibodies, their infants may have either a neonatal heart block, or cardiac endofibromatosis [ph] may occur with their hearts.

Obviously, Rh incompatibility, ABO incompatibility, antibodies to platelets, can give rise to thrombocytopenia, and antibodies to white cells can give rise to leukopenia-very well known reactions. And newborns born to mothers with myasthenia gravis or thyroid disease may also develop those diseases, such as myasthenia or thyroid toxicosis.

And maternal antibodies can also cause membranous

glomerulonephritis in the offspring. So it is something that we must also keep in mind.

Now, in addition to material antibody, what about the fetus? Is the fetus capable of generating an antibody response? And the answer is "Yes." If one looks at cord blood, one finds a level of IgM, which we know doesn't cross the placenta. That level of IgM is approximately 10 percent of the adult level.

We know that that immunoglobulin may be associated with antibodies to blood group antigens such as blood group "I," blood group "A," or blood group "B." And we know that this is a fetal contribution, because one can identify paternal genetic markers, or paternal allotypes, on that immunoglobulin.

In general, these IgM antibodies are low affinity. They are poly-reactive. They have not undergone a somatic type of mutation. They're germ-line encoded. And we know that antibody production can occur as early as the second trimester.

Now, I just want to point out, there are three, I think, pretty good examples in which we have documented evidence

that the fetus can make an immune response. They can be found associated with congenital infections in the fetus; where the fetus has been in utero in an environment where the mother has had either a parasitic infection or an infestation, or with allergen exposure.

So we know with congenital infections that the fetus can generate an IgM antibody response. With CMV, about 90 percent of offspring will have an antibody, if they have congenital CMV. With toxoplasmosis, it's about 81 percent. With rubella, it's approximately 65.

And it's not solely IgM antibody. If one looks at IgA antibodies, we know with toxoplasmosis up to 89 percent of fetuses will have an IgA antibody response to toxoplasmosis.

If one looks early on in gestation, at prematurely born infants, newborns born with congenital toxoplasmosis, one can find antibody responses in a quarter to a half of those newborns. Thus, antibody production is beginning quite early in life with these congenital infections.

Over the last decade it's been shown that parasitic infections can activate immune responses in utero, and can

prime for immune responses. And this has been shown with schistosoma mansoni [ph], with trypanosoma cruzei [ph], with plasmodium felcipherin [ph], with helminths.

And if one looks at cord blood, one can culture cord blood lymphocytes—and specifically cord blood T-lymphocytes—with antigens from these parasites, and show specific T cell proliferation. One can show that those T cells not only proliferate, but will produce cytokines. And they will produce cytokines, not just TH1 cytokines; but will produce both TH1 as well as TH2 cytokines.

You can demonstrate a specific IgM antibody response in cord blood to those parasitic antigens specifically in offspring of infected women. And one can also culture newborn B cells and demonstrate in vitro an IgG antibody response to parasitic antigens.

Last, with allergens, both with indoor as well as outdoor allergens one can demonstrate, using cord blood lymphocytes, T cell proliferation. One can demonstrate proliferation of not just naive, but memory T cells. And one can demonstrate that those T cells can make multiple cytokines, often of the TH2 variety, IL4, IL5, IL10, and

IL13. And one can generate even allergen-specific T cell clones, and show that they have the ability to generate these cytokines.

Thus, congenital infections, parasitic infections in the mother, as well as allergen exposure, all appear to be able to prime responses in the fetus.

Now, the subject of maternal immunization has arisen, And I just want to point out that with maternal immunization—for example, with Group B streptococcal vaccine that's being currently studied, as Marion just pointed out—the mother can generate a serum IgG antibody response. And that IgG can be transported across the placenta to the fetus.

Two comments about that. One, one has to realize that there will be a lag in antibody production, which is true no matter if you were immunizing a pregnant or non-pregnant woman. And there's also a lag in transport.

If one immunizes late in gestation, at approximately 38 weeks of gestation, one will not find elevated levels of antibody in the offspring. One has to immunize early, to allow the FC receptors in the placenta to become saturated

with the antibody and then transport it actively across the placenta.

And thus, for Group B streptococcal immunization during pregnancy, those immunizations are occurring at approximately 32 to 34 weeks of gestation, to give enough time for an active antibody response of the mother, as well as time for transport of that antibody across the placenta to the offspring.

In addition to making IgG antibody to the vaccine antigen, there is the theoretical possibility that the mother could make an IgG anti-etiotypic [ph] antibody to that antibody to the vaccine antigen that could conceivably act as a mimic of the vaccine antigen. That is something that has been documented quite well in animal models, but not documented very well on the human side.

There is the theoretical possibility that the vaccine antigen itself could cross the placenta. But there is not very good data showing that that occurs in man.

And last, another contribution from maternal immunization is from breast milk antibody. It's well appreciated that if one immunizes during pregnancy or after pregnancy in a

lactating woman, one can increase levels of antibodies, specific antibodies, in colostrum or in breast milk. And these are studies done almost two decades ago of women who were immunized in the third trimester of pregnancy with the haemophilus influenza polysaccharide vaccine. And they had levels approximately 20-fold higher in their colostrum, compared to non-immunized women. And levels were quite elevated as well in their breast milk, compared to non-immunized women. And this has been shown for many other kinds of vaccines.

Now, one of the questions that one has to struggle with:
What is the evidence, are neonatal B cells activated or
primed during maternal immunization during pregnancy? I
mentioned that congenital infections, as well as parasitic
infection in the mother, as well as allergen exposure, can
prime in utero. How about active immunization during
pregnancy?

Well, the bottom line is that on the human side there's not a lot of data to suggest that this is occurring. When looked at for haemophilus influenza B, influenza virus, at

Group B streptococcus, at pneumococcus, there is no good evidence that it occurs.

However, for tetanus there does exist some data--initially, from Tom Gill's [ph] group at Pittsburgh--suggesting that tetanus immunization earlier in pregnancy, earlier than the third trimester, as well as possibly multiple doses of tetanus immunization in other studies, may have the ability to prime the fetus for an IgM response to tetanus.

More recent studies though have not validated this; although I need to point out that those recent studies were done during the third trimester of pregnancy. This is something that really does deserve further study. And it's probably the type of study that should and could be done in the developing world. And I urge that that be further looked at.

Last, in closing, I just want to point out, if one looks at the neonatal immune system, just a couple of generalizations. If we look at the immune system of a full-term infant, what do we have? What we have is, we have an intact immune system, but it's a naive immune system that just has not been primed yet. So we have this,

what we say, immaturity, but it's immaturity due to lack of antigen exposure.

And I think it's important to point out that the human neonatal immune system is far more mature than the murine immune system. The second-trimester human fetus is comparable to the newborn mouse.

And I think one can appreciate why that is if one looks again at some of these numbers. What one finds is, as I pointed out earlier, if you look at mouse development, one is not seeing fetal liver development, fetal liver B cells in the mouse, until about day 14, and bone marrow hematopoiesis and lymphopoiesis until about day 15, in this 20-day gestation period.

In contrast, as I pointed out, by the end of the first trimester we have fetal liver development, bone marrow hematopoiesis and lymphopoiesis intact. And by the beginning of the second trimester, we're seeing peripheralization of these lymphocytes. Thus, the kinetics of development are quite different in the two species.

If you look at the neonate as well as the infant on the B cell side, it's just important to remember that what we do

have often in the neonate, we can have a low-antibody response. Sometimes it's transient. It's lower affinity, because often it's germ-line encoded. It can be inhibited by maternal antibody. You can see a decreased germinal center reaction.

But you do activate memory B cells. And in fact, if anything, memory B cell activation seems to be less stringent than induction of primary antibody responses in the neonate and young infant.

There may be restricted repertoires early on in life. And we do have this age-related hierarchy of responses. As we know, responses to polysaccharides don't occur until usually two years of age or later.

And similarly, on the T cell side, the newborn is not born with any kind of T cell memory. He or she has a naive repertoire. And those T cells don't proliferate and generate cytokines as well as adult cells. And they require co-stimulation, but this is because they're naive cells. And this is really a property of being really a naive cell. And what they do need is really optimal antigen presenting cell, or innate immunity adaptive T cell

interactions. And that co-stimulation is very critical for naive cells.

Last, in closing, there was this belief that the newborn could only generate a TH2 response. And we know that the newborn can generate a TH1 type response. And a good example of this is the work of Arnaud Marchand [ph] and others, in looking at the responses of newborns to BCG. And what he and others have demonstrated is that BCG, if given at birth, can generate a very good TH1 response with high levels of Interferon-gamma and low levels of IL4. And then, as was brought up by Paul-Henri Lambert yesterday, with that BCG immunization in the neonate or infant that generates this TH1 immune response, the BCG can increase antibody responses to hepatitis B virus, but not the tetanus or diphtheria.

But it's important to remember that in spite of a very potent immunization such as BCG that generates a TH1 response, that TH1 response in no way polarizes an immune response to other vaccines that are administered either simultaneously or later in life. So one doesn't have immune deviation, even with immunization occurring in the

neonate with a potent vaccine such as BCG. And so one needs to keep that in mind.

Thus, in conclusion, what we've seen is the first trimester in man is associated with initiation of lymphopoiesis, production of T-lymphocytes and B-lymphocytes. And by the end of that first trimester, we're seeing the beginning of peripheralization from either the fetal liver or from the thymus to the periphery of B cells and T cells, respectively.

In the second trimester, we're establishing lymphoid organs that become populated by those cells. We're getting normal structure formation.

And the third trimester is primarily associated with increased cellularity, increasing the number of cells of those subsets that are there by the end of that second trimester, with some increased diversification.

As I have noted, the fetus can generate immune responses to congenital infections, to allergens, as well as to protozoan antigens. The fetus can acquire maternal IgG, and it's something that one will have to keep in mind. And last, the human is not equivalent to the mouse.

I thank you for your attention.

[Applause.]

DR. INSEL: I'd be glad to answer any questions.

PARTICIPANT [In Audience]: I was wondering if you had information on why some antigens cross the placenta? You said that apparently with allergens or parasites, immune responses occur. So I presume that's due to the material crossing the placenta; and why others done.

DR. INSEL: Yes. It's a good question. And it's not been really well studied. I think one of the things is, with the parasitic antigens I think the level of antigen exposure is probably very important, and the chronicity of antigen exposure.

And exactly how transport is occurring, whether it's occurring bound as an antibody antigen complex that's transported, or whether it's transported separately as an antigen, has not been really well studied.

But I think the level of antigen probably is quite critical. But highly deserving of further study.

PARTICIPANT [In Audience]: I was just wondering if you could comment on anything about NK cells and development?

DR. INSEL: Yes. I can't. You know, there are different populations of NK cells. I don't really have the data. But if you come up to me later, I'll be glad to look it up and send you that. But I can't give you good data.

MR. PARKMAN [In Audience]: Actually, this question, or this comment, is not directly related to your talk. But if people or if the organizers will forgive me, I would like to kind of comment on the whole discussion we've had here this morning.

My name is Paul Parkman [ph]. I was with the regulatory agency from 1963 until 1990, so I was there for CBER in CDB, and then CDB and all of those places.

Since I have left the organization, I have been a consultant. And just so people know where I stand, I have consulted not only with the government, but also with manufacturers, including Aventis Pasteur and Merck.

Nobody has told me what I should say, I would hasten to add. So these are only my own thoughts. And I kind of worry about--

[Tape Change.]

MR. PARKMAN [In Audience]: --one product that has had the potential for bad reproductive toxicity, and that was German measles vaccine. And I'm surprised there wasn't more mention of that. That was a long time ago, of course. It was in 1969.

The studies that were done that suggested that the vaccine was not reproductively toxic were done almost entirely by the Division of Biologic Standards. And the results in animal models, the monkey was selected. I mean, we kind of looked back to epidemiology, and saw what the disease did. We used monkeys as a model, because they are kind of close to man. We developed a model for the disease.

We studied pregnant Rhesus monkeys. We looked at the outcomes of infected pregnant Rhesus monkeys. We made markers for the attenuated product, the attenuated vaccine. We, along with CDC, followed up after the vaccine was licensed, to look at women who were inadvertently vaccinated. And it showed that the vaccine was safe, I think most people believe.

You know, and another reason I got up is I'm kind of alarmed by rumors of a 400-rabbit toxicity test for a

vaccine that was recently being considered. And maybe it isn't 400; maybe it's somewhat less than that. But that's a very large experiment.

Very large experiments take away from personnel time and effort in trying to develop new products. So I kind of come around to the point that I would encourage kind of caution in what kind of testing the agency would require.

And I say all this because I know there's a lot to come today about people who will talk about toxicity testing. I thought your talk was excellent. But it also causes me to worry--because it sounds very "researchy"--as to what the FDA might require.

I would only counsel that the FDA be careful. It takes a lot of time and effort to do these studies under GMP, that can take away from what people can do on other things. I think it would be worthwhile some time to review the reproductive toxicology and the toxicology of products that have been approved before, not only rubella but perhaps other topics. If thimerosal is a big issue, maybe it would be worthwhile to look and see what is being done now to look at that issue.

And I'm sorry, I probably have gone on too long. But anyway, thank you.

DR. GRUBER: Yes, Dr. Parkman, thank you very much for your thoughtful comments. I just wanted to mention that actually the FDA is by no means there that we require reproductive tox studies in 400 rabbits.

As a matter of fact, I think today's discussion is all about how to really approach reproductive toxicity assessment in the most feasible and practical way, and I think I sort of mentioned that at the beginning of my presentation. But I think we're going to be discussing some of your concerns this afternoon, and we should keep those in mind.

I think we're just going to allow for one more question, and then we are actually entitled for a coffee break, so that we're not running too late.

MS. LINDBERG [In Audience]: Rae Lindberg [ph], SRI.

I wanted to thank you for a really wonderful talk that
gives us encouragement that these studies are extremely
relevant and probably feasible.

I wanted to ask you, you've convinced us that a mouse is not a man. And I wonder if you can lead us to any other small animal model? Or are we really constrained to think of primates as the appropriate model for these sorts of studies?

DR. INSEL: Yes, it's a great question. I think it's very difficult to use small animal models. And I think in certain instances one is going to need to look at primates. I think one will have to do this on a case-by-case basis. I would hate to generalize.

But I think one can learn some things from small animal models that can be relevant to the human experience. But one can't directly extrapolate for sure from mouse to man. I mean, that's going to be obvious.

Also, I urge whenever possible in the human situation to try to study man; whenever it can arise and one can get cord blood to look at, lymphocyte subsets to look at, responses. It's difficult, obviously, to get blood from infants. I appreciate that. But where inadvertent immunization has occurred, where exposures have occurred, especially with this registry, I urge people to try to look

at the human situation whenever they can, so we can learn as much as possible. Thank you.

DR. GRUBER: Okay. So I think we're going to have a 15-minute coffee break. And we reconvene at 10:30.

[Recess.]

DR. GRUBER: I would like to now introduce our next speaker, and that is Dr. Stephen Holladay. He is a professor of anatomy and toxicology at the College of Veterinary Medicine at Virginia Polytechnic Institute. And his research area is developmental immunotoxicology. He has recently expanded this focus of his research to include elucidating mechanisms responsible for maternal immune protection against teratogen-induced birth defects in mice. And I welcome Dr. Holladay to this session. Dr. Holladay.

MATERNAL IMMUNE SYSTEM STIMULATION

AND EFFECTS ON FETAL TERATOGENESIS

PRESENTER: STEPHEN HOLLADAY, PH.D.,

COLLEGE OF VETERINARY MEDICINE,

VIRGINIA POLYTECHNIC INSTITUTE

DR. HOLLADAY: Thank you, Marion. It's a pleasure to be here.

I thought after I agreed to this subject, this talk, with Marion and with Ken Hastings, and picked this title, that most of you might assume I'm talking about increased risk of teratogenesis associated with maternal immune stimulation. And this is a rather paradoxic phenomenon, to me anyway. But actually, what I'm going to talk about is decreased risk of teratogenesis with maternal immune stimulation.

This is not a new area, in one regard. It began in 1990, and then died for a while. And we picked it up about 1998 in my lab, and have been working with it ever since, more for interest than any other reason. This is not what I do for my living--Or I suppose it's not. Just recently, we were awarded five years of funding from NIH to investigate mechanisms as to how this process works. So now it's become more of what I do for a living.

But I'm going to argue that at least in a mouse model, maternal immune stimulation has what appears to be broad-

spectrum efficacy for reducing birth defects caused by a number of teratogens.

I don't know if this phenomenon works beyond a mouse model.

I would like for the audience to consider today possible
human cohorts, as we look through this data, where we might
test the hypothesis that a similar mechanism is operating
in humans but has not been recognized yet.

The beginning of this concept was in 1990. Note the journal, the "Journal of Experimental Medicine." The group that published in this journal was a Japanese group, primarily involved in cancer research. The head investigator of that lab's name was Nomura. Why they shifted into teratogenesis for a brief time, I'm not sure. It wasn't talked about in the paper. But their data were very interesting, and this caught our attention, actually about 1991, when we first saw these data.

Very briefly, these individuals used an immune stimulant. The stimulant is Pyran copolymer. And some of you that work in oncology may recognize that this was used maybe 15 or even 20 years ago to stimulate the immune system of individuals with cancer. The idea was then that activated

immune cells would find and eliminate pre-cancerous or cancerous cells, and this might be therapeutic for the cancer. It proved that it really wasn't of much value, so it's not been used in that regard.

These individuals used Pyran copolymer in a mouse model. The mouse model was an ICR, or a CD mouse, basically. These "I's" indicate it's an inbred ICR mouse model. That should be an "I" also. I'm not sure how that "O" got there. But this is an imported table, and a little difficult to change. So their mouse model was an inbred ICR mouse model.

The immune stimulation was an IP injection of Pyran copolymer on the third day of gestation, and then subsequently these mice were challenged with various teratogens.

And you can see in this case that these are not all the data from their paper. The paper was quite rigorous. Many replicates were indicated. Again, the journal is a good journal, with a powerful peer review process. We had to assume that this was a well done report. And indeed, when we validated in our own lab, we found the same results.

But briefly, the first teratogen they discussed was urethane, or ethyl carbamate. This is an agent we used to use in biology labs. I can remember when we would anesthetize frogs in the lab, and reach in and pull the frog out for dissection. It's not used that way any more, because we recognize now that urethane is a carcinogen. But it also is a teratogen, and on day nine of gestation in the mouse will produce digit defects, and on day ten will produce cleft palate. With this very simple form of immune stimulation, the Pyran copolymer is an inert substance; it's sterile. But the resident macrophages recognize this as a foreign particle, and will activate and phagocytize it. And this is a very simple immune activation procedure. And for some reason--this is what I described as paradoxical--if this immune stimulation is performed, we have a reduction in the number of fetuses that have birth defects, from 25 percent of the fetuses to 6 percent. Very dramatic; four-fold reduction in birth defects, caused by that immune stimulation procedure.

A second chemical they evaluated was methyl nitrous urea, which is an alkalating agent. And in this case, digit defects were produced.

And the birth defects were reduced by the Pyran copolymer immunization from 35 to 20 percent, approaching a two-fold reduction. A physical agent was also investigated, X-rays. Tail defects were the predominant defect. And we see here a two-fold reduction in that defect.

So when I was first called in to examine this paper, my feelings were it's kind of hard to imagine that this really works. But I know that the paper underwent rigorous review, and I know these investigators are a strong laboratory. So I recommended that we evaluate it in our laboratory as well and see if we got the same results. It could be quickly done.

We actually had a colony of C57 females we would breed with C3H males. This produces the hybrid B6C3F1 offspring that is the immunotox testing mouse used by the NTP to produce the currently most accepted risk assessment paradigm. So we had these mice in-house and we could use them. This is

an inbred line. Both of those are cytogenetic lines, and this is a hybrid of that line.

And our initial experiment with methyl nitrous urea you can see here, with dosing the same level as in the paper I just showed. We produced about 56 or so percent defects. If we immune activated with Pyran copolymer on day three of gestation, which is about six days before the teratogen challenge, we have a significant decrease--about one-third--in the level of digit defects caused by this teratogen. In this experiment, the first experiment, we had enough animals that we could use a vehicle exposed control. subsequent experiments, we've used immune stimulated controls. The immune stimulation has not produced undesired effects on the pregnancy. In fact, it appears to have some desired effects--decreased resorptions, and so forth--in addition to the reduced teratogenesis. This particular experiment was the only one that I've conducted where a vehicle exposed control had a spontaneous defect. That's why there's a little bit of height on that column there. We had one exencephaly in that experiment.

These inbred mice are a bit harder to breed and a bit more expensive to breed than outbred mice. So our next question was: What happens if we do this in an outbred animal?

And these are ICR--Again, a CD1 mouse, an outbred mouse.

And we repeated the same experiment: methyl nitrous urea, Pyran copolymers, the immune stimulation given, IP. And you see a similar profile here, in terms of reduction of the birth defect, the digit defects.

The noteworthy difference—and we've seen this repeatedly in experiments between inbred and outbred animals—is the outbred animal tends to have a lower level of defect; in this case, a bit over 20 percent, compared to approaching 60 percent on this side.

And the outbred animal also has responded better to the immune stimulation, in terms of reducing the birth defects. Here we have about a 30-percent decrease; and here we've got more than a two-fold decrease in birth defects, digit defects caused by this immune stimulation. So we have moved to outbred animals, and now that's primarily what we use.

We also--Well, that's a hair trigger there. Let's see.

Okay. Evaluated the same defect caused by another

chemical. This is urethane. Again, we've done this with

different immune stimulants, and under different

conditions.

In this case, the immune stimulant is different. It's BCG, an attenuated bacillus, we used by IP injection. The same idea: To activate peritoneal macrophages.

And this was a dramatic result in this particular experiment. We had digit defects at about 19 percent, reduced to zero here in this group. The immune stimulation totally blocked the occurrence of this defect in these mice, even though urethane was given at the same dose, same schedule, and so forth, in both of these mice. The only difference was the IP injection of BCG earlier in gestation in those mice.

These peaks have a little height. I put that in there so they would be there. They technically have a height of zero, if you're wondering about that. I just didn't feel good about putting that star over nothing. So that's where that came from.

We evaluated cleft palate also by urethane, and probably have spent most of our time there, in terms of trying to understand mechanisms by which this immune protection might work.

This is, again, in an ICR mouse model on top. You can see the normally-formed palate in this mouse. Here's the nose of the mouse; brain stem back here; the lower jaw has been removed.

We found early on that when we dose with urethane—this was at a relatively high level of about 1,000 milligrams—per—kilogram—on the morning of day ten of gestation, we could create cleft palate in about two—thirds of the fetal mice. Also, we noted that the cleft palate we produced was of two phenotypes, without much of an integrate in between. We have what we called a "wide cleft." I hope you can see that from back in the seating. And we have what we called a "narrow cleft," a more slit—like cleft. And it is probably something we can explain fairly readily by precise timing of closure of the palate with the chemical exposure, but we did have these two very different phenotypes. And we characterized them with the immune stimulation, as well.

Different stimulants were being used in the lab. I tried to get away from BCG because, while it was very effective for us and worked well, contamination of laboratory personnel might result in a positive TB test, and we don't need that. Actually, I switched to BCG because I ran out of Pyran copolymer; contacted the Hercules Corporation that produces that, and they indicated, "You know, we stopped over ten years ago. And what we've been supplying has been on our shelf, and that's gone now." So we actually had to switch immune stimulants, and that was probably good for us.

But we asked the question of: Why not Interferon-gamma? This is a macrophage activating protein. And the literature is suggesting that macrophages are role players in this phenomenon, and that their activation is very important. So why not just inject IP Interferon-gamma? So that's what we did in this model of urethane-induced cleft palate.

And we also wanted to know: If we did a more remote immune stimulation, what would happen in that case? There were other reasons to suspect this might be worth looking at.

But we used a foot pad injection of a low level of Freund's complete adjuvant, and then evaluated cleft palates. In this urethane-exposed model with these two immune stimulants, total cleft palate, you'll see, was about two-thirds of the animals in the urethane-exposed group. These divided into the phenotypes I just showed. They were predominantly the wide cleft. About 86 percent of the clefts we saw were wide clefts; about 14 percent narrow clefts. And you can see how the immune stimulation changed that profile.

Interferon-gamma injection reduced to about 46 percent the cleft palate incidence. And then, of those clefts that we had, only 45 percent, rather than 85, were what we considered the more severe, or the wide cleft palates. So there's a change in two directions here.

With Freund's complete adjuvant the data are very similar.

Again, instead of an IP injection, this is a foot pad
injection at a remote site; a different form of immune
stimulation. Yet the data are quite similar. We have the
same reduction in cleft palate, a very similar profile of

shift between the narrow clefts and the wide clefts in this model.

I have a graduate student now who is using the same immune stimulants, but in quite a different model. His interest is diabetes. This is insulin-dependent diabetes mellitus, which we know increases risk of birth defects in humans. There are mouse models for studying mechanisms behind the hyperglycemia and the associated birth defects.

And he took advantage of this system, and induced three levels of blood glucose by using a streptozosin [ph] induced diabetes. This is a longer hensile [ph] toxicant. And he produced what he called a low and a moderate and a high blood glucose group, and then focused on this high blood glucose group, which you see down here.

Abnormal to live: These are malformed fetuses. Fifty percent of the fetuses were malformed in this high blood glucose group. Those were predominantly exencephalies caused in this case. There were a few cleft palates and a few other defects, but the majority of these defects are exencephalies.

And you'll see with the immune stimulants—this again is complete Freund's adjuvant—this was reduced to 21 percent. With GMCSF, a colony stimulating factor, this was reduced 23 percent. And Interferon—gamma, again, 14 percent. There is no significant difference between any of these three. All three are significantly below the 50 percent in this case. So the immune stimulation again worked approximately equally, and in a very different model, for reducing birth defects.

This student noted that placental weight was significantly increased with Interferon-gamma injection, and had an interest in the possibility that the placenta was important also in this protection. And I'll show some slides along those lines in a bit.

But now this slide summarizes data currently available in the literature that demonstrates that maternal immune stimulation in a mouse model reduces chemical or other teratogen-induced birth defects.

This is in a paper in "International Immunopharmacology," a review paper we just published a few months ago. And if you have any interest in that, you can just search on my

name, and this will come up. The reason I put it in is to show how diverse the teratogens are that have been used with this procedure.

Here is TCDD, or dioxin, that produces cleft palate when given on day ten of gestation.

This is cyclophosphamide that produces craniofacial or limb defects.

Urethane, we've talked about: hyperthermia; produces exencephaly.

Diabetes mellitus, I've mentioned.

Methyl nitrous urea.

Valproic [ph] acid. I had a visiting scientist in the lab interested in valproic acid. She injected mice to produce exencephaly with this drug. This is the anti-seizure drug, sodium valproate, used for epilepsy; and does increase risk of neural tube defect. And reduced this defect with a Freund's complete adjuvant immune stimulation, from 53 percent down to zero. Again, the defects totally went away in this case.

A number of these mice without immune stimulation were born with open eyes, and mice normally are born with closed

eyes. And we noted that that also was significantly reduced.

This was an interesting experiment for another reason. This is the first case where we saw a defect that was apparently caused by the immune stimulation. Mice that were exposed to sodium valproate and also Freund's complete adjuvant, a significant number of these mice were born without tails. That's not typical for sodium valproate. That's not a defect associated with this drug. It is very rare in the ICR mouse model we use, an anuria defect. So we're presuming--We've only done this experiment once, actually. This is, I think, the only one up here that's non-replicated. But we did see an increase in anuria, or tail-less mice, in this case, which was kind of interesting. X-rays, again, here, also. So diverse teratogens. The immune stimulation procedure can be quite diverse. Some of these I've talked about. These investigators injected rats' splenocytes. This would be an allogeneic--or actually, a xenogeneic cell in a mouse model, which would induce an immune response.

And I think we've seen all these other immune stimulants in earlier slides.

Defects, again, that are protected against are of a variety. Here's the level of birth defects without immune stimulation; with immune stimulation. And you can see in all cases we have a significant reduction in these defects. So it's a broad-spectrum thing.

The question that immediately comes to mind is: What's the mechanism? How does this work? And I'm going to tell you now, I don't really have the answer to that. But in recent--well, in the last year and a half, this is the area we've been focusing in.

The earlier report in 1990 suggested that the mechanism might involve activated immune cells that cross the placenta and find and eliminate pre-teratogenic cells. And they actually presented what I would say is limited data. And they readily admitted that this might not be the operating mechanism. It wasn't oversold by any means, but simply suggested.

And our laboratory had questions about the possibility that this was occurring, and that part of the fundamentals of

reproductive immunology is that maternal immune cells don't routinely traffic across the placenta. There is low-level trafficking of some cells; for instance, NK cells. But when placental barriers break down to maternal immune cells we see pathology in the fetus in the form of a graft[ph]versus-host response. So we really didn't believe this was the case for the immune protection that we were seeing. This hypothesis also came out of a cancer lab; and again, with Pyran copolymer. I could reread this to sound like the cancer hypothesis, where activated immune cells find and eliminate pre-cancerous cells. So it's kind of the same hypothesis, restated for a developmental scenario. Other reasons we didn't think that was going on: Preteratogenic cells in a fetus are going to be semiallogeneic relative to the mother. And it's difficult to understand how the maternal immune system might separate those from other fetal cells.

But beyond that, for some of these chemical agents--and dioxin is a good example--the defect, the cleft palate defect in this case, is associated with a failure of apoptosis of cells lining the palatal shelves. This is an

event required prior to proliferation of the underlying mesodermal cells that will then cause closure of the palate.

If these epithelial cells fail to respond to death signal and apotose, we have to consider that the pre-teratogenic cell in this case is actually a phenotypically normal cell that didn't die. That raises further questions about: If maternal immune surveillance in the fetus is causing this effect, how are these immune cells recruited into the fetus, and how are they recognizing these phenotypically normal cells as different from other cells? So we had a number of questions about how that might work.

And our thought was that this is not a direct effect; it's an indirect effect. The likely mediators are cytokines.

There are considerable cytokines that might be

investigated.

Oh, we've lost part of that slide. Okay, well, that's okay. I wasn't real fond of that slide, anyway.

[Laughter.]

DR. HOLLADAY: We did perform a cell tracking study to see if we could track cells across the placenta, activated

immune cells from mother to fetus, using a probe, the chloromethyl dichlorofluorocene diacetase--quite bright on flow cytometer. And the gist of that site was, we couldn't do it.

So turning to possible mediators of this effect, we were interested in cytokines. Our immediate dilemma was that activation of the macrophage causes production of more than 100 described proteins. And these proteins in turn operate on other cell types to cause secretion of even more proteins. So our enthusiasm was diminished for trying to sort through the number of proteins we would have to, to find the active ones; which are in all likelihood acting in concert with each other, several proteins as a family, rather than one or two, anyway.

So our thought was, if cytokines are the mediators and are crossing the placenta, then there are placental targets, or there are fetal targets, that we should be able to show a change in. And these are gene expression targets.

The literature is very poor regarding ability of cytokines to cross the placenta, we found out right away searching.

Interferon-alpha is described as crossing. TGF-beta is

described as crossing placenta, and in a mouse that's an important cytokine development.

CSF1 crosses placenta very readily. GCSF1, granular cycolomine [ph] stimulating factor, crosses placenta. I would like to know if GMCSF crosses. I can't find that type information.

But our presumption was that if these cytokines are regulatory molecules and are crossing the placenta and operating in the fetus, we should be able to see changes in gene expression. There are focus arrays available now to do what we wanted to do then, but there weren't at the time. So we used RTPCR, and just selected a group of genes that are important in controlling cell cycle—proliferation, differentiation, apoptosis—a few genes, and evaluated the expression of these genes.

And briefly, the expression in particular of these isoforms of BCL2 with P53 in the fetus are described as important, believed to be. And I believe they are important for controlling the balance between proliferation and differentiation.

So we examined these in target tissues. in this case, it was fetal head. The fetal palate I think would be better. And we can do that now using real-time PCR, and focus these data. But here we see that urethane reduces expression, the expression ratio of BCL2 to P53 in the direction of P53.

If we had to predict what that means, we would say that's a shift towards increased apoptosis. With immune stimulation, Freund's complete adjuvant, here you see this is normalized. Relative to control with Interferon-gamma, it's actually a bit beyond control. So this is returning gene expression in the fetus.

This is kind of a novel thing. It struck me when we saw that, that maternal immune manipulation is altering expression of very critical cell cycle controlling genes in the fetus. So we thought about the fetus for so long as a genetically pre-programmed entity that derives nutrition from the maternal organism, but other than that largely directs its own development. And these data would suggest that maternal influences might be more than we've thought.

And the immune system in this case is exerting an influence on gene expression in the fetus--protein, KNAC, alpha gene. And the protein products of this gene can influence expression of both BCL2 and P53. We evaluated that. And you can see that urethane drove that expression level down. And immune stimulation with one of these, Interferon-gamma, increased it.

I'm not going to overly speculate, again, about what these mean. But analyzing the data and choosing gene ratios—in this case, which way is the best to look at it—is difficult, to say the least. I was happy at this stage we only had five genes that we were considering.

We did do a form of cluster analysis, called "principal component analysis." It allowed us to give a coordinate expression value to gene shifts with "N"; and the "N" in this case being the mother. And this would be summated gene expression for a litter of animals.

And you see in the control window here, each one of these dots represents a coordinate gene expression value for these five genes for a litter-worth of animals. The urethane is shifting this coordinate gene expression to the

left and slightly up, in this graph of two principal components from the principal component analysis.

This is available in a software package—it's on the Web—from the University of Pennsylvania. I'm seeing a little bit more of this type of analysis, as we all fight with how do we evaluate expression of multiple genes simultaneously. With Freund's complete adjuvant injection, you'll see that the coordinate gene expression—these yellow squares—is shifted down, so it's normalized along this PC3 axis. With Interferon—gamma injection, it's shifted further, so it's beyond normal along PC3, and closer to normal along PC1.

And basically, this is what we saw in the preceding slide, the same information. So it's kind of a neat picture. I like the picture, again, which gives the message that maternal immune stimulation is changing gene expression in the fetus, and is in part normalizing the change caused by urethane, which we're presuming is related to teratogenesis.

So we've been developing hypotheses as to what is occurring, what underlying effects are responsible for

immune protection against birth defects. One of our hypotheses now is that immune stimulation is acting, at least in part, to restore dysregulated apoptosis.

The idea that many diverse lesions in development are caused by a similar underlying defect is not new. And that's what we're pursuing here. I suppose a good example of that are the chemicals that cause the right forelimb ectrodactyly. In other words, we're losing the lateralmost digit, or two digits. This defect can be caused—a very specific defect—by a number of pharmacokinetically

and dynamically different chemicals that all seem to effect

distal limb polarization.

Our hypothesis is that immune stimulation is restoring a dysregulated apoptosis. And I've tried to present some of the data from the literature that would support this. Cyclophosphamide we know produces craniofacial defects. These are associated with excessive apoptotic death in heads of the fetal mice. And maternal immune stimulation will reduce those defects.

Cyclophosphamide also produces distal limb defects. These have been associated, again, with increased apoptotic

nuclei. Sections were cut of these limbs, and we find that maternal immune stimulation reduces those apoptotic nuclei, and also reduces the distal limb defects.

So what I'm trying to do is collect enough data that it becomes compelling. Again, our gene expression data showed that the teratogen caused a shift in the BCL2-to-P53 ratio, that would lead us to predict increased apoptosis is involved in that defect. Immune stimulation with either of two stimulants shifted this ratio back towards BCL2, and that's a shift we would predict would be in favor of proliferation over apoptosis.

In this case we're seeing the same thing--Wonder what that check came from. It's interesting how computers communicate. We suggested a number of effector molecules that may be involved. I'm going to go by that, because they are on other slides anyway.

Some more information about potential mediators: In this case, TGF-betas that are involved, the TGF-beta-2 mRNA and TGF-beta-2 protein, found to be elevated in fetal mouse heads after injection of cyclophosphamide. Immune

stimulation blocked both of these increases—this again is a gene expression effect here—blocked these increases. Interestingly enough, increased TGF—beta in proliferating fetal tissues is believed to act as a signal to cause increased cellular apoptosis, by inducing P53 gene expression. So it's again supportive of a basic argument of restoration of a dysregulated apoptosis.

Cyclophosphamide also increases TNF-alpha expression in fetal heads. Maternal immune stimulation will reduce the defects associated with that, and it also increases this TNF-alpha mRNA, or the transcripts in the head and brain of the fetuses.

And interestingly enough, again, TNF-alpha acts as a signal to increase apoptosis in a variety of fetal tissues. So the fact that immune stimulation reduces that suggests again that we might be overriding a dysregulating effect on apoptosis by the teratogen.

My student working in diabetes was interested in placenta in part because of the increase in placental weight caused by Interferon-gamma. There are other reasons for this.

But evaluated, using an array, he developed in our lab a

number of growth factors and cytokines he believed were important in placenta; and evaluated placental function using these.

And very briefly, this line in the urethane-exposed animals represents control level expression of these genes. These are genes expressed at below control level; these at above control level.

With the Interferon-gamma stimulation, you can see the gene expression has increased for the vast majority of these genes he evaluated. With Freund's complete adjuvant, we have more clustering around the control level, more normalization of that gene expression.

So again, he's affecting genes by this immune stimulation-this, of course, would be predicted—in placenta for genes of this sort. And his theory was that this is related to the reduction in birth defects.

He did a principal component analysis to give a coordinate gene expression picture of this shift. And it was interesting to me how similar this was to our fetal head picture. Here's the control level coordinate gene expression. Urethane caused guite a shift on two axes of

this expression. Freund's complete adjuvant normalized that along one axis. Interferon-gamma brought it to beyond normal, and closer on the other axis; beyond normal on one, closer on the other. Here are the immune stimulants alone. All of these treatments affect gene expression.

Is this related to the defect? I don't know, but it was kind of interesting data. It was interesting to me that this profile here was so similar to what we saw in fetal heads of urethane-exposed animals. However, this is a larger panel of genes in placenta.

This student is also a veterinarian, so he's trained in pathology and histopathology; and sectioned placenta and evaluated the effects of the treatments on placental tissue. Here is the syntrophoblast region, the placental labyrinth, this is a control animal, the cytotrophoblast, these are blood vessels.

These aren't the clearest of slides, but I think you can see considerable damage to placental architecture through here in the region of the syntrophoblast. We've got fibrotic lesions through this portion of the slide. That's with urethane exposure.

And now note these lesions. And as we go to the next slide where the animals received an immune stimulation prior to the urethane injection, you'll see that they largely disappear.

And his argument to me was: Think about that. We're improving the support structure for the fetus. If you improve the support structure, then gene expression is going to be more normal. Basically, everything you've seen so far has to do with improving the placenta.

And that sounded maybe a more reasonable argument for the underlying reason this immune protection against birth defects works. It's very believable. But then, immediately you think, "Well, wait a second. Some of these agents--" and again, I can go back to dioxin "--are not placental toxic at levels we're using." There's no placental toxicity of this sort associated with the 9-microgram-per-kilogram dose of dioxin we gave on day nine of gestation. And beyond that, the lesion is well ascribed to a selective effect on cells lining the palate. So while it is attractive for urethane, it's not attractive for dioxin.

I think in the long run we're going to find that it's a multi-factorial mechanism; several different levels are involved. And certainly, improving the placenta would be beneficial to fetal development. And in fact, the fetuses were larger in some cases with these immune stimulations than in the urethane-exposed animals. So that may be involved.

And that's actually the level we're at in our lab right now. So I am going to stop with that.

[Applause.]

DR. GRUBER: I think we can allow one or two questions. What we're going to be doing is, we're going to change the schedule here. We're going to have the presentation following of Dr. Smialowicz in a moment, and then we're going to have lunch at twelve o'clock. And then after lunch, at one o'clock, we're going to be starting the roundtable discussions.

But you had a question for Dr. Holladay?

PARTICIPANT [In Audience]: Yes. Actually, they are two very brief questions. One, can you please clarify the time sequence in which you gave the immune stimulation with

regard to the teratogen? And how much you probed that for how much you could get away with delaying the immune stimulation?

And then secondly, one teratogen which is kind of interesting because it affects immune activation itself is thalidomide, which blocks NF-kappa-B. And I wondered if you looked at that?

DR. HOLLADAY: Those are both very good questions. The immune stimulation timing is important. For instance, with diabetes, if we stimulate after development of hyperglycemia, we can't block the defect. Stimulation has to occur at a time of normal glycemia.

Now, how early we can go is somewhat surprising, as well. Typically and in the papers in the literature immune stimulation was during gestation. But we found we can immune stimulate these animals actually prior to breeding them, and we still get a significant reduction in birth defects. So that again seems to be somewhat in the phenomenal range.

The whole research area I think is very intriguing. But you can immune stimulate quite early, and still get significant protection against birth defects in a mouse. Now, the second question, which was also a great one but now has slipped my mind--Give me two words. What was that second question?

PARTICIPANT [In Audience]: Thalidomide [inaudible].

DR. HOLLADAY: Thalidomide, okay. Well, we've not used thalidomide. But it raises another interesting issue, in that so many teratogens are also immunotoxic, and I'm an immunotoxicologist. And I hadn't really made this connection before, but all of the teratogens we've worked with here, the chemical teratogens, are also immunotoxic. The dioxin is a wonderful example.

And it raises the question, if maternal immune stimulation reduces teratogenesis, how about the flip side of that? Is maternal immune suppression in itself an event that increases risk of teratogenesis? And thalidomide would fit well into that picture. And I don't know the answer to that. But to me, it's become an interesting question.

DR. GRUBER: I would like to thank Dr. Holladay for his interesting presentation. And I would like to introduce the last speaker before lunch break, and that is Dr. Ralph Smialowicz. He received his Ph.D. from the department of microbiology and immunology at the University of North Carolina at Chapel Hill, School of Medicine.

He is with the U.S. Environmental Protection Agency, at the Research Triangle Park in North Carolina. And his adjunct appointments include the curriculum in toxicology, School of Public Health, at the University of North Carolina, Chapel Hill; and the School of Veterinary Medicine, North Carolina State University in Raleigh, North Carolina. And I thank him for being here today to discuss further with us the area of developmental immunotoxicology. Thank you.

DEVELOPMENTAL IMMUNOTOXICOLOGY

PRESENTER: RALPH SMIALOWICZ, PH.D.,

U.S. ENVIRONMENTAL PROTECTION AGENCY

DR. SMIALOWICZ: Thank you, Marion.

This is going to be quite a divergence from the discussions and presentations that have occurred thus far. The

Environmental Protection Agency is not interested in vaccines. It's interested in environmental chemicals that humans are exposed to. And consequently, the work that we do deals with that.

What I would like to do is to talk to you about developmental immunotoxicology in a rodent species, primarily in the rat, and some of the work that we have done to demonstrate the efficacy of doing this kind of testing to identify developmental—

[Tape Change.]

2В

DR. SMIALOWICZ: Now, let me get all the equipment together here and start.

I want to congratulate Dr. Insel on his presentation of the development of the immune system. He did it from the standpoint of the human. I'm going to do a quick look at the development of the rodent—this is primarily mouse work—and identify what we consider to be periods during immune system development in the rodent that are critical in regard to when dosing occurs.

If you look at this, you can see that stem cell formation is a critical period. Stem cell formation occurs early, at

about the time of circulation, onset of circulation, within the rodent species. The splanchnopleura, the AGM region, gives rise to the potent stem cells that feed to the liver, which in turn seed the thymus and the spleen, the thymus earlier than the spleen. And then eventually, the bone marrow takes over for the production of hematopoietic cells in the rodent.

After birth, we know that in the rodent that the spleen continues to provide B cells to the infant or the meonatal mouse and rat. And we also know, based on the information from many different studies, that this first month of life in the rodent really can be considered a very immunodeficient period of time in the mouse.

As we go through the life of the animal, obviously, there is the establishment of immune memory, which occurs up to six months; and then immunocompetence; and then finally, immunosenescence.

These are some of the markers for B cell development in the rodent species, the presentation of B cell precursors that are found from the AGM period. And this is a time line here. Basically, we get the hematopoietic stem cells

getting into the different compartments for hematopoiesis at about day eight.

And then we look at surface markers that Dr. Insel talked about earlier, and the development of the B cells now in the liver.

And then finally, the spleen continues to be the source of hematopoietic stem cells for the mouse. And basically, that occurs after birth with four weeks of life, basically coming to full maturity in the rodent.

This is the hematopoietic scheme for the human. And I'm not going to go through that, since it was covered earlier. I just want to indicate the big difference, as was indicated earlier by Dr. Insel, about the fact that the rat and mouse, the rodent species, are much less developed at birth than is the human for immune system responses. This is basically an old slide that demonstrates the contribution of IgG, which Dr. Insel covered earlier, in the fetus, and then the loss of that, and then the production of antibodies by the fetus during the first year of life. So I won't go into that in any detail.

This is T cell functional comparisons between mouse and rat, from Mosier several years ago. This is the mouse at birth, and this is the human at birth. They are responses that are detectable in the mouse at birth, PHA stimulated responses and the mixed glucocyte response, at this early age.

However, ConA and the cytotoxic T-lymphocyte response don't occur until much later in the life of the mouse. However, for both of these types of responses the human is capable of doing that at the time of birth, or earlier.

This is kind of a comparison of several different maturational landmarks, if you would, between the human and the mouse. And this is based on decimal portion of the respective gestational period. We give the human as a 40-week gestation period, and the mouse about 20 days. And what you can see from these different landmarks, maturational landmarks, is that the mouse is much slower in demonstrating these during its gestational period.

There was a question earlier about functional NK cells.

And I have a reference to this particular decimal, the activity of natural killer cells in humans that occurs at

about a third of the way through gestation of the human.

And that was worked by an Italian. I believe it was

Santoni [ph]. But if that individual is interested, I

could get that reference to them.

So what we have here in the rat and in the mouse is what we would consider the vulnerable periods of immune development, or potentially vulnerable periods of immune development: The hematopoietic portion, which is about day seven through nine; stem cell migration, progenitor cell expansion, day nine through 16; bone marrow and thymus colonization, which occurs from gestation 13 through birth; and then the maturation to immunocompetence, and an establishment of immune memory, from birth to 30 days, and then 30 to 60 days, consecutively.

And what we have done is try to expose animals during this section of the development of the rat, as well as through the entire, or most of, this period of gestation. We haven't done any work during the initiation of hematopoiesis. Basically, all the work that I'll show you, at least from my lab, is from gestation day nine up to about 42 days of age in the rat.

When we do immunotoxicity testing, we have a paradigm that we employ to look at different aspects of immune function. And this is a litany of the types of tests that will apply: Spleen and thymus weights, cellularity, body weights. Ex vivo types of tests include the splenic natural killer cell activity; assays of splenic lymphoprolipherate responses to mitogens; in the rat, salmonella type for murine. Antigen is an LPS, like in the mouse, but it doesn't respond as well as the mouse does to LPS-induced responses.

The mixed leukocyte reaction: Here we have a problem again with the rat versus the mouse, in that the spleen cell for some reason has what we call "suppressor type cells" that don't give rise to a very good or robust mixed leukocyte reaction. And so we use lymph node cells in the rat model for that particular assay.

We use flow cytometric analysis. Depending on what in vivo and/or ex vivo type test that we do, we'll look at spleen, thymus, and/or lymph nodes.

We look at cytokine profiles, to try to see if there are any changes in the profiles. We've used the ribonuclease protection assay, which is one where you have several

different cytokines that are expressed or can be identified on gels. And we purchase those for the rats. Some of that is strictly TH1, versus TH2 type cytokine profiles.

In vivo tests, which really are turning out to be the most sensitive tests to determine if a chemical is a developmental immunotoxicant—and actually, an immunotoxicant per se: The primary and secondary antibody response to sheep erythrocytes. You can do that with a platforming cell assay or the ELISA assay. And we've also used KLH.

Delayed-type hypersensitivity response: We've used bovine serum albumin, and KLH, using the foot pad swelling test.

And you can also use those animals to measure immunoglobulin responses to that antigen.

We've used the contact hypersensitivity response to DNFB, dinitrofluorobenzene [ph]; looked at penis swelling, ear swelling tests in the rat. And have also used host-resistance models; one including the T.spiralis infectivity model.

So let me just give you--Okay, this is a time line for immune responses to sheep red blood cells, that was

published in 1985 by Kimura et al, demonstrating when you could really start to pick up immune function in these animals as measured by the platforming cell assay, with sheep red blood cells as an antigen.

And as you can see, you can get demonstrable effects and responses here at as early as 20 days postnatal. The peak response occurs at postnatal day five--45 here.

This also is the same type of pattern that you see with the T-independent antigens, T-independent-1 and T-independent-2 type antigens, the TNF, LPS types.

So you can measure in the rat at about weaning an immune response to these different types of antigens. If you go down any earlier than that, you're going to have a lot of trouble picking up anything.

These are the chemicals that we've looked at: di-Noctyltin dichloride, and tributyltin oxide. Di-N-octyltin
is used as a stabilizer in the production of
polyvinylchloride materials. Tributyltin oxide is a
mulluscocide and a fungicide, and is used in a lot of
paints and especially as an anti-foulant on ships and
boats.

Good old TCDD, one of the most studied of all immunotoxicants.

Methoxychlor, which is a pesticide--one of only four organochlorine pesticides that is allowable in the United States, based on EPA's, basically, elimination of many organochlorine type pesticides.

And then, heptachlor, which is another organochlorine, which has been banned for about 25 years now.

So we have looked at these five different chemicals, and tried to determine: Could we find an effect on the development of the immune system? If we find an effect in the immune system, is it a dose-related response that we see when we look at the immune functional end points?

We also are interested in knowing if this exposure during the development of the immune system is more severe than if one were to do the same dosing regimen in an adult animal, to determine if there is a difference in the sensitivity there.

Another consideration here is the pharmacodynamics, particularly metabolism of the chemical and its

distribution. And I'll give you examples of that as we go through these slides.

The first group of studies we did were organotins.

Basically, what we did, originally we looked at the prenatal exposure, and found that there were no effects whatsoever on the immune system of these rats.

We then decided to go and look at the newborn animal, starting on gestation day three, through 24; dosing those animals over a period of time, for a total of ten doses, with either the di-N-octyltin dichloride or TBTO.

I want to point out here that there is discussion about dosing or exposure of vaccines to animals. You can gavage a three-day-old rat. You have to be good at it, but you can do it.

In any event, then we looked at this time line, looked at the variety of immune function assays, and I'll show you those right now. This is four weeks, actually, four weeks of age. And this is just basically four days after the last exposure of these pups to the chemical. This is DOTC. You see that we get dose-related suppression of all the mitogen-stimulated responses, the T cell mitogen responses

and the B cell mitogen response. So this is just four days after the last exposure.

We still see this suppression up to seven weeks. Okay? So now we're talking three weeks post last exposure. So these animals still have a suppressed response, as measured by the mitogen responses here.

After that, we checked them again at ten weeks, and they had returned to normal. So this is not a persistent suppression, but it's a somewhat long-lived suppression, at least for these functional end points.

With TBTO, we found effects on the NK cell activity. Here we used two different targets: the yak [ph], which is used primarily--It's a mouse lymphoma; and the WFU, which is a rat lymphoma. And basically found effects at four weeks, which is three days after the last exposure. However, subsequent to this, there are no effects on the NK activity.

These are the mitogen responses. And we also included a mixed leukocyte reaction here. This is three days--four days after the last exposure. Basically, another dosedependent type of response and suppression of mitogen

response and the mixed leukocyte response. We went up to ten weeks, and we still saw suppression here; only at the high dose, however. And again, this is a bit more long-lived an effect than with the di-N-octyltin dichloride.

So just as a summary--I'm not going to go through this, but I just want to point out that we did expose adult animals. These are all done in male animals, by the way. We did do the same dosing regimen with the adult males, and did the different tests, and found no effects whatsoever at any of the doses that we used. So obviously, the developing immune system of the rat, exposed to either of these two organic tints, caused "immunosuppression."

The next group of slides that I'll show you are TCDD.

We're looking at a single exposure to TCDD, or dioxin, on gestation day 14, and how that affects the immune system.

TCDD is a known immunotoxicant, as I said. There's a lot of work that's been done with it—and actually, work prior to what we did here—by Vos and Faith and Jack Moore, that demonstrated that this is a developmental immunotoxicant.

And we decided to look at it a little bit more closely. So basically, we look at—This is a time line, basically. We

dosed the animals, the pregnant animals, on gestation day 14. This is by gavage.

We looked at phenotype. We know that there are changes in T cell populations, a block between the double-positive CD4/CD8 to the--double-negative to the double-positive CD4/CD8 in these animals.

And then we looked at a host of different immune function assays. And what we found was that the DTH response was one which caused effects up to 19 months of age. And let me just show you those data.

Okay, what we did, this is a cross-fostering study, talking about dynamics, pharmacokinetics, and metabolism, and that sort of thing; although this is not a metabolized chemical. With the control we have no effect. This is a dose of one microgram-per-kilogram on gestation 14. Placental: There is placental transport, but we don't have a change in the response. Lactational exposure only: We know that TCDD is found in the mother's milk. No effect. But when we look at the placental and lactational, we get a suppression. This is animals that we did dose response here, looking at how low could we go to see an effect on the developing

immune system. This is the DTH response, I'm sorry. The previous slide is the same.

Basically, the DTH response was the most sensitive response, and so we focused on this. Basically, what happens is that at four age you see a dose-related decrease, but it's not significant. However, when you get out to 14 months—I'm sorry, 14 months of age—we had across—the—board suppression of the DTH response. We also looked at a higher dose, 3 microgram—per—kilogram. And this is the data that goes out to 19 months of age.

More recently, we've looked at the effect that TCDD given on gestation 14 has on the DNFB ear swelling response in the rat. And as you can see, at two months old, there is an effect, at 3 micrograms—per—kilogram; and again, at four, an effect.

The interesting thing, we did this with both BSA--The data I just showed you was with the BSA adjuvant. The other antigen that we use is KLH. And we found the same kind of effects with the KLH-sensitized animals.

This is data from Fan et al, 1996, in which they looked at the suppression of the DTH response to KLH in animals

exposed to TCDD. It took a dose of 90 micrograms-per-kilogram to cause a decrease in that particular response. So we're talking about at least over a tenfold difference-a hundredfold difference-in the dosing where we're going to find an effect in a developing animal, versus an adult animal, using TCDD as the toxicant and the delayed-type hypersensitivity as a metric.

Okay. This is just a summary of this; again, highlight the work by Fan. And here is a computer here. This is the KLH adult study where the DTH took 90 micrograms-per-kilogram to suppress the response.

All right. This is a schematic of a group of studies that we did with the National Institute of Environmental Health Sciences primarily, orchestrated by Bob Chapin [ph], a developmental teratologist.

In the early '90s, the National Research Council, under the auspices of the National Academy of Sciences, wrote a document—and the title of that document was "Pesticides in the Diets of Infants and Children"—because of the concern for children being potentially more susceptible to exposure to different types of pesticides.

And so what we did was, we developed a dosing scheme and testing scheme, that is illustrated here. I know it's real busy, because it has not only the immunotox, which is here, but also the developmental tox, and repro-tox and neuro-tox. But let me just focus on this part here for the immunotox.

Basically, we did the dosing starting around gestation day 14, and in some cases on gestation day 12; dosed the dams; continued to dose the dam for the first week, so that the pups were exposed via lactation. And then after that, we directly dosed the kids. And the reason why we dosed the kids, because this would be closer to what would be happening in young children.

And they're still getting it from the dams. The dams are no longer dosed, but they still have some of this whatever pesticide in the milk, if it is in the milk. And then, we stopped at six weeks of age; we wait two weeks; and then we look to see what happens.

We did five different pesticides. We did carbaryl: Found no effect there. We did tebuconosol [ph], which is a fungicide: No effect there. We did chlorporophoz [ph]

[inaudible]: No effect there. However, we did effects in methoxychlor and in heptachlor, and let me just show you those data.

These are nine-week-old male pups that were assayed for their response to sheep red blood cells. And you can see that there was a dose-related decrease in the antibody response to sheep red blood cells at the very lowest dose and the mid dose here.

We didn't have any other animals that we could use to look further into other immune function end points, unfortunately. So that had to wait for the work with heptachlor.

Now, the heptachlor work is interesting in that heptachlor is no longer used as a pesticide. It's banned in the United States. However, there was an incident in Hawaii in the late '70s and early '80s where heptachlor was used to control mealy bug on the pineapple plants. And as is the case in a lot of agricultural endeavors, the pineapple plantation owners were interested in using every part of that pineapple plant.

Consequently, what they did was they took the leaves from the pineapple and basically shredded them up, and added it to what they call "green chop," which was fed to dairy cows in Oahu. It was only in Oahu. And what happened was that the cows' milk was contaminated with heptachlor, obviously. The doses that we chose here were based on a low dose of 30 micrograms heptachlor per kilogram per day, in dosing these animals. The reason being that that dosage was within the 95th percentile of the amount of heptachlor epoxide—which is the major metabolite of heptachlor—that 95th percentile of what was found in mothers' milk on Oahu. So these data are relevant, from that standpoint, in this heptachlor fiasco, if you would.

This is just some pharmacokinetic metabolism information. Basically, the blood, thymus, and spleen had about pretty much the same levels. Obviously, the fat had a lot more, because this is a lipophilic, organochlorine compound so you have a lot in the fat. And because it's in the fat it's of concern because if these animals were not exposed post-natally, as the pups were being breast fed they would continue to be getting that heptachlor epoxide.

What we found here, this is the antibody response to sheep red blood cells in eight-week-old mice. This is two weeks after the last exposure, and we see a nice dose-dependent decrease at all doses that we examined.

And then, 26 weeks later, now we're talking about basically 20 weeks after the fact. The IgG response: The same antigen was reduced, as one might expect; but not necessarily expect it to be as "persistent" as it apparently was.

We also looked at the DNFB response. And I must mention, for all of these--for the TCDD work and for this work with the pesticides--we looked at both males and females. It's an important consideration, given that what we're finding is that males seem to be more susceptible than females. Why, I don't know.

But basically, this demonstrates the suppression of the DNFB response, ear pinna swelling, in the males that were exposed to the lowest dose, to the highest dose.

Again, this is just a summary of what I just showed you. But I want to point out that we looked at the dams. Now these are the females, so they're not going to be as

sensitive as the males. But we looked at these females, and we saw no effects after weaning.

What we're doing now is we're trying to dissect the developmental sequence, those periods of developmental susceptibility; dosing the animals during those periods to find out if there is in fact one or two, or maybe many, critical periods of development that would be affected by exposure to this particular pesticide.

in, and that's drugs. It has nothing to do with vaccines. But this is work from three different laboratories.

The first one is diazepam: Work by Schlumpf et al; did a lot of work with this; used the rat. And in their studies they used both males and females; no real distinction between males versus females.

Now I want to talk about something that FDA is interested

But nonetheless, a subcutaneous injection on gestation day 14 or 20--of the dam, obviously--at 1.25 milligrams diazepam per kilogram. They demonstrated decrease in T cell responses, ConA, and mixed leukocyte reaction; decrease in the plaque forming cell assay to sheep red blood cells at eight weeks; alterations in the ability of

spleen cells, macrophages, and thymocytes to produce different types of cytokines—the TNF—alpha, IL1, IL2, 6.

And this is in four—to six—week—old animals.

And finally, kind of the real acid test for an immunosuppressant is what happens when you challenge it with an infectious agent. And they found suppression of the T.spiralis infection in eight—week—old animals.

I apologize for all these computers and signs I don't recognize. Must be a different version of Power Point, of something.

Dexamethasone: A steroid. Bakker did a lot of work with this. He has several papers, but this paper in 2000 from the JI indicates that there are increased signs of guinea pig myeloid-based protein/complete Freund's adjuvant induced neurological tail tonus and paralysis and hind limbs of these animals. So it's somewhat of an autoimmune type reaction that was demonstrated with the dexamethasone. Also, there were changes: Down regulation of certain types of cytokines, LPS-stimulated cells and ConA-stimulated cells; decreases in a variety of different cytokines. And also, an increase in spleen production of TNF--and I

believe this is gamma, Interferon-gamma, and IL2, at nine weeks old.

So what you have here is kind of a mixed bag of both: an autoimmune type exacerbation of a response to the protein, and some indications for immunosuppression as well.

Acyclovir work, from Stahlmann's lab, using 10 milligrams per kilogram; and this is gestation day ten; subcutaneous injection, either once or three times. And basically, changes in body weight, so there's some toxicity, overt toxicity obviously, associated with this exposure; but decreases in thymus weight in males and in females.

Again, the test with the T.spiralis, trichnospiralis [ph], looking at decrease in the infection, protection against this particular parasite, as well as decreases in the antibody response to that parasite.

Now, finally I come to the human situation. And these are epistudies that deal primarily with organochlorine chemicals.

In Canada, Dewally did work with Inuit Indians in Quebec Province. These are subsistence hunters and fishers, and

they are eating wildlife and fish that are highly contaminated, with a variety of PCBs in particular. And so what they did was they looked at possible problems in the young children born to the mothers of this particular group--this tribe, I quess you would call it. And what they did was, they were able to associate levels of DDE, hexachlorobenzene, dieldrin, as measured by the amount of these different chemicals in breast milk, and associate that with an increased risk in otitis media. And then also, they found that that also included the hexachlorobenzene and dieldrin. And this is in one-yearold Inuit newborns. And the population that they studied was 171. So what that says is that these particular children are suffering from otitis media more so than children that are not--based on the levels of these different chemicals in the mothers' milk.

PCBs and TCDDs work was done by Weisglas-Kuperus. This is from The Netherlands, work from The Netherlands. This is a cohort that's been studied for many years now. In the last iteration--It's not really the last, but in 2000--it was published.

Maternal cord blood and plasma and milk, served to the surrogate for the pre- and post-natal exposure to these organochlorine chemicals. They found an association with exposure to both of these types of chemicals, with a decreased antibody response to mumps and measles; again, an increase in otitis media and chicken pox; and then a decreased prevalence of allergy in 42-month-old animals-children, sorry, 42-month-old children.

This change, this decreased prevalence of allergy, may have something to do with a TH2/TH1 shift. They haven't examined that, but that may be what's underlying this decrease in allergy.

Finally, work by Karmaus--and this is from Germany--looking again at PCBs, DDEs, and hexachlorobenzene: They're looking at whole blood levels of these chemicals in the children that were examined. And the children were eight-year-old children, 340.

And again, what we see is another predilection to increased risk of otitis media. In this case, unlike for the TCDD-PCB work, asthma increased, as opposed to decreased prevalence of asthma or allergic type responses. But there

was an increase in IgE. And that's in the seven- to eightyear-old children.

So what we have here are some examples of what can be associated with some of the effects that we see in the animals during the development of the immune system.

So what I'd like to do, to just summarize here: We've used the rat as a model, because the rat is the model primarily for toxicity testing. I think it's a sensitive species, rodent species, for identifying developmental immunotoxicants following either pre- and/or postnatal exposure.

The immune function that we looked at--innate and specific--can be successfully assessed from pre-puberty throughout life.

Alterations initiated during immune system development in the rat may occur at lower chemical doses than those required in the adult.

With certain chemicals—and here we're talking pretty much about the organochlorines and diazepam—it appears that males are more profoundly affected, which may be linked to perturbations in the endocrine—immune network.

Selection of the immune developmental periods for chemical exposure if possible should be based on the pharmacokinetics of the chemical; as I showed with the trans-placental and lactational exposure to TCDD, versus what happened with the organochlorines where it's not passed either via the placenta nor the milk of the dam to the pups.

And from our standpoint, I think it's important—These are all screening now; this is not trying to get to the bottom line of how is this all happening. But for screening purposes, I would recommend that dosing encompass the in utero period, lactational, and pre—pubertal periods of development; basically, loading the deck, if you would, to try to identify potential immunotoxicants, from the standpoint of environmental chemicals.

Thank you.

[Applause.]

DR. SMIALOWICZ: Any questions? Okay. Nobody is coming up for questions, so I guess we're going to go eat.

Everybody's hungry, I guess.

[Pause.]

DR. SMIALOWICZ: Okay. Thank you.

[Whereupon, the workshop recessed for lunch, to reconvene at 1:15 p.m., that same day.

DR. SERABIAN: There's going to be sort of a modification in the afternoon schedule as we have it.

Basically, what should have been this morning we're going to start with this afternoon, which is topic one, "Study Design." Dr. Mildred Christian is going to give a short presentation. Then we're going to have a question-and-answer session similar to yesterday.

Then we'll go into topic four--because we feel that with those two topics, there's more of an overlap with those two than with the others--which is "Animal Models." And Dr. Barrow will again give a small presentation. Then we'll follow that with some question-and-answer session.

And then, approximately around three, we will end; we'll have a short break. And then we'll start after that with topics two and three; because again, those two, immunological and developmental endpoints, pretty much--There's a bit of overlap there, also. So we thought that was the best way to organize it. Okay.

And let me introduce myself. That might help. My name is Mercedes Serabian. Right now I am with the Office of Cellular Tissue and Gene Therapies, in Center for Biologics.

I just want to reiterate what Marion had stressed this morning. The questions that she put up briefly in her talk we're going to put up also during these sessions. And the questions do have a bit of overlap, but that's I think important, because it just shows that basically all the issues and topics that we have quite a bit of overlap and need to be evaluated.

One big thing, though, is that even when they do overlap we're going to try to keep the session moving and the topics moving as much as we can, just to keep the afternoon moving along.

I just want to stress that, again, the ultimate goal of today's session is to present the guidance document, as was done, and the questions that both we and industry have had at this point; and to try to come to some type of consensus as to the questions and the revisions that we think need to be made to this document. And I think that's really

crucial. And it is crucial for you all, as you are the manufacturers as well as the companies that test these agents. Okay.

Let me introduce the first speaker, then, which is Dr. Mildred Christian. Dr. Christian obtained her Ph.D. from Thomas Jefferson University, in developmental anatomy, and has been active in regulatory toxicology for more than 35 years.

After 14 years as a teratologist/toxicologist with McNeil [ph] Labs, which is a J&J subsidiary, she founded Argus Research Labs in 1979, Argus International in 1980, and the Center for Photobiology at Argus in 1989; at each of which she served as chairman and president.

She merged two of these organizations with TSI Corporation in 1991, becoming vice president of the TSI in vivo testing group of five CROs. Beginning with Genzyme [ph]

Transgenics' acquisition of TSI in 1996, she has served as executive director of science and compliance for GTC's

Primedica [ph] Corporation, after the purchase of Primedica by Charles River, until November 2002.

In this position she was responsible for scientific integrity and regulatory compliance for the CRL-DDS laboratories, coordinating the product management across the labs, and for reviewing protocols and reports generated by Argus Research.

Mildred has been personally involved in the evaluation and submission of over 1,200 developmental, reproductive, and general tox evaluations, interacting with more than 350 pharmaceutical, chemical, and consortium organizations supporting these activities.

She has also developed more than 1,000 position papers for chemical and pharmaceutical companies, the FDA, the EPA, the Office of Technology Assessment, and the OECD.

She has also been involved in the ICH repro-tox guidance documents, the "red book" document, and many, many other numerous documents that I don't have time to present at this point.

Dr. Christian.

[Applause.]

STUDY DESIGN

PRESENTER: MILDRED CHRISTIAN, PH.D.

EXEC. DIR., RESEARCH, ARGUS RESEARCH LABS

DR. CHRISTIAN: I will make a statement that sounds like I'm with the government now. These are my own opinions that will be presented, and not those of anyone else. The designs that will be described are those which we used in studies over the years, and they represent to some extent the development of the procedures in testing for these types of compounds.

The basics are that when one does these types of studies, as mentioned yesterday, they of course are performed in conformance with GLPs. That's basic.

Then we're supposed to have them do the route and frequency of administration that is mimicking clinical use.

Sometimes, very difficult.

Consider the pharmacokinetics: Well, that's perhaps relevant to the adjuvant, as we heard yesterday, but not necessarily to the active portion of the compound; the pharmacodynamics, though, certainly, of these vaccines. Bioavailability—this is something important; the volume that can be administered. And then, identify dose—response

relationships, something we've heard may not be too important, or even relevant, with these types of compounds. The reason I say that—and these are the considerations as compared with the basics—is that we're going to look at only one species—theoretically, the relevant species—which we did a great deal of discussion about, and will do some more later, as to what is relevant.

Clinical use: The clinical use is really that we are, at least in theory, addressing the immune response; which is quite different from the classic developmental toxicity study in which one would address the response to a drug or to a chemical.

And then, we are also looking at the potential toxicity of at least two components; one being the vaccine itself, and the other, the response to the vaccine with an adjuvant, and possibly of the adjuvant alone.

When we were developing the ICH guidelines, this is what we came up with. Now, these are the segments. And when you see reference to the ICH guidelines for reproduction and development, what is important—and one of the reasons there's some confusing nomenclature perhaps used—is that

reproduction is the whole cycle. And it starts with reproduction, conception, and you go all the way through, and end up with maturity, the next generation, and sometimes go into senescence. And what we said for the ICH quideline was that we were to look at each segment. Now, what is come up with for these types of testing was when the initial thought--And this was really something that Joy Cabanero [ph] and I worked with many, many years ago. The initial thought was--because no testing at that time of repro-tox--Would there be any effect of the immune response on development? And would that possibly cause the most expected changes in the endpoints: abortion, death of the conceptus, malformation, reduced fetal body weight? So we were at that time thinking strictly in terms of the type of developmental toxicity that is usually evaluated in a developmental toxicity study, which ends at C-section. Do you address function? No, because you don't look. They're dead. Do you address immune response? That wasn't normally done. But remember, what we usually did was we had to dose every single day of gestation, because every day is a moving target in the developing conceptus.

And so the normal developmental toxicity study starts about implantation; goes through embryogenesis, with exposure there, and that being the period most likely to result in malformation. After palate closure, during the fetal period, that's the period of growth. And generally, these two "C" and "D" sections, as you heard earlier, are the intervals that one is concerned about in a developmental toxicity study.

However, you've also heard that we should do boosters; we should do it at the time of peak response. And that results actually in having a study that starts preconception. And so we do do some evaluation of fertility already in the design, if we do the booster shots.

And to look through to weaning has been suggested, and that would certainly be some postnatal evaluation; although not necessarily, as I'll show you, sufficiently long to see if we had immune effects out late in life.

This is just a summary of some rather large points, to show that the human and the mouse, at least, are not the same.

And we've gone over that several times. But I think what is important here is, if we are attempting to maximize

response in the rodent species, it's really in the fetal and postnatal period; and it's in the first and second trimester in humans.

And this is a repeat of that showing in a mouse or a rat, with the maturation with immunocompetence going on one year; 30 days postnatal. Immune memory, going up to 18 years in humans; mouse or rat, 30 to 60 days postnatal. So we have different time points when the targeted tissues might be sensitive.

Now, what is the response of species, and when is the maximum response? If we look and take the concept that the maximum immune response should be present during the most sensitive period of gestation, classically that's usually considered the first trimester for morphologic changes; and need to initiate treatment before if we need a booster. But we also have to remember we're going to give several injections. And ideally, we'll have to have information obtained about when we need to give those injections from at least non-pregnant animals, so that we can compare them with pregnant animals and see if pregnancy itself is

something we need to be concerned about. That is generally not done.

Now, we all know certainly there are several components for vaccines. We should know the general toxicity of each of the components. And for the adjuvant, I think at the very least there should be an arm in the developmental tox study, if it is a new or unusual adjuvant. I'll show you what I mean by that, and why.

We have heard that the most common dose tested is one times the human dose. And in the studies which I'm going to show you, they were generally done for NIDA. And there was a series of them that were done based on when the maximum immune response would be reached.

There are also some that are proprietary compounds, and they were similarly either studied ahead of time, to find out when the maximum response would be present, or dosed sequentially with different sets of animals, so that that could be evaluated post-testing. And then one could look at when the maximum immune response was present, and identify which group was considered the most relevant for testing and evaluation.

It has to be remembered that sometimes the doses are limited by local toxicity. And that's very important in developmental toxicity because of the secondary effects of local toxicity. We know that if we were doing a dermal study and we caused remarkable irritation to the dam, there are certain things we would expect to happen. We'd have stress reactions that would result in secondary effects in the fetuses. Most likely, we would see such things as extra ribs; we might see some reduction of fetal body weight; we might expect to see some increase in resorption. We also know that if we're dosing before implantation and we have stress reactions and a boostered immune response, we may get a lower incidence of implantation. And for that reason, when we're doing artificial insemination in rabbits, or natural mating, with prior treatment, we add more animals to the study, simply to ensure that we have sufficient numbers that become pregnant for evaluation. Often, more than one dose in the series of studies I'm going to show you that we performed; but seldom is there even an attempt to show a classic dose response. And that's appropriate.

How many doses are generally tested? That's certainly on a case-by-case basis. And it would be dependent not only on the onset of the response, but also on how long it lasts, the pharmacodynamics of the compound.

And then, of course, the effect of boosters. Whether it increases the response, maintains it, or whether it's going up and down during that whole interval, is important.

Now, the developmental tox endpoints to look at, I would think, certainly would be, at a minimum, the classic ones, but would go through birth. Why? Because the immune system, if that is one of the target organs, isn't going to be even partially developed to an appropriate extent until postnatally.

This is just my own impression: Unless there is a particular need, I would not add in crown-rump length because it's a very insensitive parameter, in that it's highly variable, particularly in rabbit species. It's a little bit better in small rodents.

Organ weights: I put in I don't know that they would be necessary. They are highly variable when there is a selected number--and that number, if there's only one or

two per litter that are taken. And of course, because it is a developmental tox study, the litter would be the representative unit.

And we found in our laboratory, unless we have at least three on average on the basis per litter for males and females, that the organ weights are not truly representative of the litters, and that statistical analyses are often misleading, both as false negatives and false positives. So I would recommend, if we're doing organ weights, to do at least three per sex per litter. Antibody levels can be looked at for the mother, for the fetuses, and should be looked at for the pups. And this would answer the relative questions about: Is it present, and does it persist? I don't think doing the whole kinetics as an initial screen, in the absence of other effects, would be appropriate.

One thing that must be considered is not only the immune response, but is the potential for antibody transfer present? And that is dependent on the placenta. Exposure in the conceptus may not be the same as it is in humans.

And for that reason, we chose, when we were initially putting some of the study designs together, to use rabbits. Because placental transfer in the rabbit occurs, antibodies do cross, and it's much more similar to what happens in the human placenta than certainly the rodent. Or we've been asked sometimes to even do canine studies. And you must remember that certainly even a pig, it doesn't cross at all. And you'll be hearing more about species differences later.

Timing differences: Theoretically, we're to use the species—and this would be for any developmental tox study—the species with the best response, and with placental passage, and with the immune system most like humans.

And Paul will be talking a little bit later, but I'd just like to show you here. We do guinea pig occasionally, because of the longer time in utero and the comparable development of the CNS in the immune system to humans; not completely comparable, but both guinea pig and pig, closer. Rabbit: Quite a bit postnatal. But it has two of the things: it mounts a good immune response, and you have placental passage.

Mouse: Maybe not. Most of the immunotox information there, but not quite as good a model.

We've done ferrets. One had a canine. Only responsive species.

Non-human primate: Perhaps. Very good, but very expensive, and limited in numbers; so not always the best model.

This is a summary of the study designs I'm going to show you. You'll notice that they were done either when their maximum response was present, or they were given at various times during gestation.

In all cases, they checked for placental passage. The rat was usually intramuscular. One test group generally at one times the human dose. Whenever there was a new or unusual adjuvant, it was tested as a separate arm. Most included shots that brought up injections pre-mating. And this gives us some indication of potential effects on the female fertility.

Some of them were followed postnatally. And the observations that were made there were generally for viability; growth; nursing activity, which in the rabbit is

a very good measure of whether it has normal behavior or not. One has to remember, there is a certain number of rabbit mothers that don't like their babies, so you need some background as to what is the normal incidence of pup loss. And antibodies were looked at, both in the does and the pups.

When you're on maternal effects, something that should be remembered on a practical basis are daily observations.

Because when one is injecting or administering a compound at weekly intervals, you want to follow the pattern of effect for developmental toxicity anyway, because the later days of the gestation may be those where the effects are. So if the injection is given on day one, the next day the mother may not eat, may lose weight; and you'll see a weight loss, and a weight gain. But if you only weigh weekly, you'll miss that. And if there are any effects on development, it wouldn't be seen. So even when the injections are given at weekly intervals, there should be daily body weights in your developmental toxicity study. And here what we did find was when there was daily treatment—And we have a study with daily treatment. Why?

Because every day of gestation the sensitivity of the animal changes towards the response that will occur, or potentially occur, in a conceptus. We found that there were effects on the dams that were not observed when there were fewer treatments. It's not remarkable; it's just something that one should be aware of.

We also found that the only studies in which we saw adverse effects on embryo fetal development were those in which the adjuvant arm showed similar effects.

This is a study design in mice. It was a developmental tox study, which meant treatment was limited to one week premating, or gestation-six, or gestation-13. Why? Because that got at least one treatment during embryogenesis, one treatment that would occur over fetogenesis. And the dose was two times the human dose. We saw no effects in either the dams or the conceptuses.

This is a group of rabbit studies. In the range finding study, this is the longest one we had. Six weeks pre-insemination; three weeks pre-insemination. It had been already determined it was a three-week period to reach maximal response with a booster. And then during

gestation, gestation days six, 12, and 18, with the vehicle alone, a high dose.

These animals were determined to be sero-positive at two weeks, and only those that were were continued on study. Doses at 1 and 2 "X." There were samples. They were worried about immune complexes. The kidneys were weighed. There were no effects on the dams or conceptuses. This is a developmental tox study with daily dosing, seven to 19; a control; an adjuvant; a low and two high doses, one at the high dose of 20 times the human dose. This is one of the NIDA studies. It's a compound that has been used; it's a tetanus toxoid. It had been in use in humans. Two high doses, one which followed the seven and 19, and one which was seven and 12 and 18 during gestation. Here we had maternal toxicity in the daily dosing. No developmental toxicity in either daily or the weekly dosing during gestation.

Another developmental tox, beginning four weeks. And this is the weekly schedule, four, three, two, and one, pre-insemination. And then another dose on gestation day 18. These were samples taken of antibody levels. They were

taken for the mother for baseline level before the first dose at two weeks, at four weeks, gestation days 18 and 19, from the fetuses at C-section. Antibody titres were present. No effects, or no adverse effects.

Another IM study: One week pre-; different schedule, two, six, and 13. In each case, these are based on predetermined information as to when the maximum responses were present. A placebo control, and three high doses, day two, day six, or day 13. And the mothers were bled, and antibody levels determined before the first dose and on GD-29, which is the day sacrificed, so that they could figure out if there was persistence or when the peak effect occurred.

This is another one: Two groups, IM. The difference is, you can tell the number of samples that were taken. This is the first set that would go postnatally. And there is another set that is taken at lactation day 21, when the animals were weaned. Four weeks, one week, sort of the standard after that—seven, 14, and 24. One times the human dose, which was 20 times the maximum human dose.

Fetuses at gestation 29; pups at lactation day 21; the mothers before each.

And the others are quite similar here, going the same way.

But the important thing is we were making these

determinations.

This is a ferret study, selected because that was the responsive species. A quite large study. Treatments were days three, six, 13, or 22. A vehicle and a high dose at one times the human, so there would be a vehicle and a high at day three, at day six, at day 13, and day 22. Samples were taken at termination on day 35.

What can we say about this? Well, most studies, the evaluations were limited to the immune response. The antibodies were studied in the dam, the conceptuses, and the pups, to determine either before or after what the peak levels were. Most looked at only one dose.

I think this is important. Most did not administer the test material or get a peak response in the animals during the period when the animal's immune system was developing. Because the purpose wasn't to look at the target of the

immune system; but rather to see if we caused death, abortion, or malformation.

I believe that's very important. My personal opinion is, if we're going to consider the immune system the target, we'd better consider treatment postnatally of the mothers and seeing if the antibody comes across in the milk and if they continue to be exposed to it during the lactation period.

To date, no study we conducted with these types of vaccines looked at potential effects on the immune system. However, when we have used other types of vaccines and immunosuppressive agents, we have seen immunosuppressive effects that were not evident until after puberty.

And I think this is important. None compared the pregnant versus the non-pregnant animals. And if we are worried about the offspring, we should also be worried about the pregnant animal potentially being different from the non-

pregnant animal. And the same applies, I would hope, to the pregnant woman versus a different potential sensitivity.

We look at potential effects on embryo-fetal development, but it's really only regarding the presence of antibody. The transfer and persistence can be addressed by looking at fetal levels and pup levels, and at least knowing whether it persists in the pups up until weaning. But if we want to look at immune function, the designs do have to be changed as FDA has suggested.

He says "No," but I think the EPA data also support that. Viability and body weight and growth are the best indicators today, 14 postnatal. After that, if it's a rat or a mouse they'll start eating material food; they're on their own; they're weaned; and the whole weight pattern and viability, there's a second dip in viability.

Dose response: The only dose response we saw were effects of adjuvant. I haven't showed you all the studies we've done, but just gave you some samples.

I think fetal tissue interactions are probably unnecessary, but possibly indicated on a case-by-case basis.

I don't think histopathology would be remarkably additive to the quality of this study, and would be only indicated if there were effects on organ to body weight ratios. And

it must be remembered that, to have any value of them, we need at least three males and females per litter, and it should be evaluated on a litter basis.

So that probably gives you enough to think about. And I thank you for your time and the opportunity to show you some of these designs.

[Applause.]

DR. SERABIAN: Thanks, Millie.

We're just going to switch slightly, and I'm going to ask
Dr. Barrow to give his presentation now. And then we'll
combine those two topics. I think that's a much better use
of time at this point.

Dr. Barrow studied in London, while working at the same time for the reproductive toxicology department at Beecham Pharmaceuticals. Over the last 19 years, he has worked for Cieros [ph] in Italy and France.

He is an active member of the American and European teratology societies, and is a frequent guest lecturer at faculties or facilities in Paris, Lyons, Strasbourg, and Toulouse.

Paul is presently director of toxicology at MDS Pharma Services Preclinical in Lyons.

ANIMAL MODELS

PRESENTER: PAUL BARROW

DIRECTOR OF TOXICOLOGY,

MDS PHARMA SERVICES

DR. BARROW: Thank you for that introduction. I'm very pleased to be here.

As a lead-in to the next discussion, I'd just like to give a rapid overview of some of the considerations that I consider important in species selection for developmental toxicity testing of vaccines. At the same time, I'll give a very rapid overview of some of the work that we've done at MDS on behalf of Aventis Pasteur of four new vaccines presently in development.

So we can start with the obvious question [Shown on Slide:
"Which is the Best Model?"]. Every regulatory toxicologist
hears this question at least twice a month; not only for
vaccines, but for practically any therapeutic carrier you
might think of.

And strangely enough, the reply is nearly always the same [Shown on Slide: "It's the Primate, Stupid!"]. Of course, the best model species is going to be the primate, for all developmental toxicity studies, or practically all.

It's worth remembering at this point that the very first regulatory guidelines were issued by the FDA back in 1966.

And this was a direct response to the thalidomide tragedy. Thalidomide, as it turns out, is practically only teratogenic in primates, at least at human therapeutic doses.

However, even back then we decided--Well, that's the royal "we"; I was seven years old. Even back then it was decided that we would use rodents and rabbits for our routine developmental toxicity screen.

And the reasons for this are just as valid today as they were 40 years ago. There are just not enough primates in the world to supply our routine needs for routine developmental toxicity testing. And this situation is getting worse, not better; with practically all Western governments being very reluctant to license new primate breeding facilities on their soil.

To make matters worse, to get a valid developmental toxicity study in the primate we need to use relatively high group sizes. To start with, each monkey normally only has one fetus per pregnancy. And also, primates don't tend to reproduce well in the laboratory. They have a high abortion rate of around 15 to 20 percent. So in a typical primate study, we're lucky to obtain ten fetuses per treatment group to examine at the end of the study; as opposed to 200 more per group in a typical rodent study. One other disadvantage of primates which is particularly pertinent to vaccines is their long life span. If we want to expose primates pre- and postnatally, and then look at the functioning of the adult immune system, we're going to have to wait four to five years. Now, I don't know many of you out there that have that sort of patience. So what are the most likely alternatives? Perhaps we won't have the choice. Perhaps the vaccine is only immunogenic in the primate, in which case we can't justify other

The three most obvious alternatives are the rat, mouse, and rabbit. Although, after listening to Millie's

species.

presentation, I should have added the ferret and the guinea pig to that list. I haven't done that, because I haven't used them personally.

The rat is the most frequently used species in developmental toxicology. Also, we heard this morning that a lot of developmental immunotoxicity work has been done in the rat.

Having said that, there's no reason why we can't use the mouse. Anything we can do in the rat is also perfectly feasible in the mouse. The mouse also has the advantage of having the most studied immune system of any animal.

I should also have said that the rat is often the only species in which we do postnatal examinations for

The second most used species after the rat is, of course, the rabbit. But the rabbit is normally only used for prenatal toxicology. We don't normally do postnatal examinations in this species. As Millie said earlier, postnatal examinations are very difficult; although we can't always avoid it, as you'll see in a moment. And as

developmental toxicology studies with drugs.

we heard yesterday, a lot of immune tests are not valid, or simply not available, in the rabbit.

Here are some of the considerations that we bear in mind when choosing a species. Evidently we want to choose a species that does mount an immune response to our vaccine; bearing in mind, of course, there may be quantitative and qualitative differences in immune response between species. One point raised in the FDA draft is the timing and rate of maternal antibody transfer. I'll come back to that in a moment.

And also, we're going to want to be able to do both fetal examinations and postnatal examinations in our chosen species.

Coming back to maternal immunoglobulin transport, as we've heard, the big difference between primates and rodents is the timing of maternal antibody transfer to the offspring. In primates practically all maternal antibody transfer is before birth. As it turns out, according to the literature at least, this is also the case for the rabbit and the guinea pig.

In rodents, however, only about 10 percent of maternal immunoglobulin transfers before birth, with the other 90 percent transferring across in the milk or the colostrum.

And other species, as it turns out, are even worse, with little or no maternal antibody transfer before birth.

Now, this is the strategy that we have used to test four new vaccines. We normally start off with preliminary studies to look at the maternal immune response in the pregnant animal, and also to look at the timing and rate of maternal immunoglobulin transport, in each of three species: the rat, the mouse, and the rabbit.

And on the basis of these results, we normally choose just

And on the basis of these results, we normally choose just one species, to go ahead and do the main developmental tox study. We normally hope to be able to use a rodent because, as I said, the postnatal examinations in the rabbit are very difficult, although we've not always been able to avoid this.

So in the preliminary study we start with groups of 12 female animals of each species--rat, mouse, and rabbit.

I've gained some new characters here. I didn't make that choice of bullet point. I think these are probably the

characters that were missing from Steve's presentation this morning.

We treat animals of all three species before mating, according to a predetermined vaccination schedule which is based on the known immune response in that animal, and also on the proposed vaccination schedule in humans. So in a typical study, we'll treat the animals two or three times before mating, at ten-day intervals.

After mating, we then give all the females a booster vaccination on day six of gestation. This serves not only to maintain high maternal antibody levels throughout the remainder of gestation, but also hopefully to expose the developing embryo to the actual components of the vaccine formulation.

Six females--that's half of the females of each species-are then sent to caesarean examination, where we take blood samples to look at fetal titres and maternal antibody titres.

The other six females of each group get another vaccination at the end of gestation; are then allowed to give birth.

And we kill off the females and pups on day 11 post-partum.

Again, we take serum samples to look at antibody titres in the pups and mothers. The FDA suggests that we also do antibody analysis in milk. Unfortunately, we've not been able to do that so far, because of analytical difficulties. This is an example of the type of results we obtain in this preliminary study. The blue blocks are fetal antibody titres. The red blocks are antibody titres in the pups on postnatal day 11, and these are expressed as a percentage of maternal titres. This was with an HIV vaccine. We see here in the rat, fetal titres didn't reach maternal antibody levels before birth. In the mouse however, we did get a good prenatal transport. So we were able to justify the use of the mouse with this particular vaccine. As expected, we also got a good prenatal transport in the rabbit. I would also note that in all three species we did get a good persistence of maternal antibody levels in the

So for the four vaccines tested to date, we were able to justify the use of the mouse for two of these vaccines: the HIV vaccine, and the tetanus/diphtheria/whooping cough vaccine.

pups up to 11 days of age.

Unfortunately, in two of the cases, we had to resort to using the rabbit. In the case of the meningitis vaccine, this was because of poor or unpredictable immunogenicity in the pregnant animal, in the pregnant rodent. But in the case of the rabies vaccine, this was because of poor maternal immunoglobulin transport before birth. We then go on and do the main study. We use the same vaccination schedule as in the preliminary study. Here we start with groups of 40 rodents, or 35 rabbits. One subgroup of animals goes to caesarean, and we perform all the routine teratology type examinations. The other subgroup is allowed to give birth, and we do all of our postnatal followup on the litters following birth. This second generation is normally terminated at weaning. Although if we do see any indications of developmental toxicity--which we've not done so far--we will extend the study to cover a postnatal followup, possibly with behavioral examinations, probably adding immune assessments; and perhaps even mate the animals to look at their fertility.

I would just like to ask one question before finishing, concerning comparative development and maternal immunoglobulin transport. I wonder if we've not been a bit misled by this. I wonder if we've not been premature in rejecting the use of the rat.

As we have heard this morning, rodents are very immature at birth, by comparison with humans. For instance, the erythropoietic activity of the bone marrow is already well in place in humans at the time of birth, but continues to develop postnatally in rodents. But we have also heard, nevertheless, the ontogeny of the immune system is fairly comparable between mouse and, I assume, the rat and humans. My question is: Are high fetal antibody titres really necessary, given that the critical period of immune development in the rodent probably occurs postnatally? And as we've shown, we do get good maternal immunoglobulin titres during this period. So providing there is a postnatal followup, we might not need to ensure exposure of the fetus to antibodies in rodents.

I don't claim to have any conclusions; though I do hope to have some information to fill in this slide by the end of

today. So I guess now we just have to put the hand into the hat, to see what we can pull out. Thank you.

[Applause.]

DR. SERABIAN: Okay. I think we have about an hour, roughly, maybe a little more, to go over the two topics.

[Tape Change.]

3B DR. GRUBER: My name is Marion Gruber. I'm with the Office of Vaccines.

MS. MILLER: Margaret Miller, FDA, Office of Women's Health.

DR. VERDIER: Francois Verdier, Aventis Pasteur.

DR. INSEL: Dick Insel, University of Rochester.

DR. HOLLADAY: Steve Holladay, Virginia Tech.

DR. SMIALOWICZ: Ralph Smialowicz, the Environmental Protection Agency.

DR. CHRISTIAN: Mildred Christian, Argus Research.

DR. VAN DER LAAN: Jan-Willem van der Laan, The

Netherlands, Medicines Evaluation Board.

DR. BARROW: Paul Barrow, MDS Pharma Services.

DR. HASTINGS: Ken Hastings, Division of Special Pathogen and Immunologic Drug Products in CDER, FDA.

DR. SERABIAN: Okay. I think initially we'll start off with--You have the questions in the pamphlet that you got. We'll start off with the first question, just because it's a rather broad question. And please feel free, you know, with any additional questions, to go up to the microphone stands. So this is just to start us off. Okay? The first one is: In addition to endpoints outlined in the ICHS5A document, what additional parameters should be evaluated; such as immunological parameters, histopath, and functional assessment? It's what parameters; i.e., if you think functional assessment, what do you mean by that? DR. VAN DER LAAN: Should we reserve this question to the last round? In fact, it is the endpoints session. DR. GRUBER: Yes, we can keep this rather flexible. And we will just leave this up there, and we'll just maybe screen through the questions, trying to get some answers to some of them. But perhaps we start off the discussion. Or if somebody has questions regarding the two presentations that you just heard, then please come up to the microphone.

MS. HELPERIN [In Audience]: Yes, Jane Helperin [ph], ID Biomedical Corporation.

This is a question for Dr. Christian. I was wondering if you could give us a little more information on what compounds you were looking at in the studies you were discussing? And also, with regard to the different animal models used and the study designs you used, what the basis for that was? Such as, was there any background information or historical information which caused you to choose the designs you chose?

Because I think one of the reasons we're here is to try to figure out what rationale we should be using for study designs. So maybe you could give us a little more information on that?

DR. CHRISTIAN: Yes. With the exception of three of the compounds, they were all NIDA vaccines that were used either for--There was a flu, a tetanus, a hemolophius--Yes, there was an HIV, and an influenza.

And there was background data on each of those that told us the time for the booster shoots and how long it would take to get the maximum response.

All of those studies that were performed were performed for the purpose of evaluating whether they caused abortion or malformation, or affected fetal size in utero. None of them were done as functional assessments of postnatal development of the immune system, because that was not looked at as a target.

Rather, there were concerns whether immunization of pregnant women, particularly in Third World countries—if that would be a problem that would cause them potentially to have problems with morphologic development of their conceptuses.

And so they were designed with that in mind, and without a postnatal phase; other than in, I believe, six of them: evaluation of viability and persistence of the antibodies in the milk and in the pups.

PARTICIPANT [In Audience]: I have a question for Mildred or Steve or anyone who would like to answer it. But it seemed like some of you had looked at thymus-to-body-weight ratios. I always felt that was a very sensitive indicator for developmental immune changes. And did you look at

that? And did you find it not to be the case? Or did you just not look at it?

DR. HOLLADAY: For all of the chemicals that I showed you, we looked at them and we really didn't see any effects on thymus-to-organ ratios, or spleen-to-body weight.

DR. CHRISTIAN: We didn't see any, either. But we did look at it in four of them.

DR. SMIALOWICZ: Well, Mike, you and I published a paper together in '96, EHP, evaluating fetal immune parameters and their sensitivity for indicators of developmental immunotoxicity. And of the indicators we found that were most sensitive, fetal thymic cellularity was among the sensitive ones in mouse models. When we correlated those data, they were more sensitive, or that was a more sensitive endpoint than fetal thymic markers, which occasionally didn't change when cellularity went down.

I contrast, cellularity of the fetal liver was a relatively poor marker of developmental immunotoxicant exposure. But marker expression in fetal liver was a pretty good indicator of developmental immunotoxicity.

So the summary of what I just said, according to our review in '96, is that fetal thymic hyper-cellularity is often a very sensitive indicator of developmental immunotoxicant exposure. It will, of course, depend on the chemical that is being evaluated. And fetal liver marker expression, again, is sometimes very sensitive.

I think DES and TCDD are beautiful examples. I suspect that the fetal liver progenitor cell may be the definitive sensitive cell for dioxin exposure. This is an exquisitely sensitive cell. So TDT positive cells in fetal liver in a mouse: pretty sensitive indicator.

DR. HOLLADAY: If I can make a little clarification here, we never looked at the fetus. We looked at animals that were at least—well, post—weaning. So we didn't see any effects there.

MR. STUMP [In Audience]: Don Stump [ph], World Research. I just wanted to ask the panel what their thoughts are on the designs as Dr. Christian and Dr. Barrow both talked about, immunizing before gestation and then also during various points during gestation.

Any thoughts on whether it's better to take the same group of animals and immunize them before breeding and through gestation; as opposed to taking subgroups where you have some animals that you only expose during gestation, some you only expose prior to gestation?

Because it's certainly differences you might see in terms of giving that vaccine to an animal that has not previously been challenged by the vaccine.

DR. CHRISTIAN: Yes, I think you have to do some range finding or pilot work first, to know that. And certainly, we did modifications based on when the responses were there. In some cases, we did multiple groups on separate days of gestation because the response--For instance, if we gave it on day six, it maxed about the middle of embryogenesis. And at other times, gave it pre, based on the onset of the effect.

I think it was most effective when given prior to gestation, and the booster given. And it probably had the least effect on the mother. What we were originally worried about when we started these studies—and that maybe was ten years ago now—was the potential effect of fever

and its effect on each protein, and what would occur there. And we found that we didn't have any problems with that. That is different from some other types of vaccines. But with these therapeutic vaccines, it wasn't a problem.

DR. BARROW: I don't actually see the point in performing groups that are only vaccinated during gestation, unless we're trying to look at possible effects of other vaccine components other than the induced immune response. We have to treat them before mating in order to get a maintained immune response throughout gestation.

DR. VAN DER LAAN: May I comment also on that? I think it's pretty important the way that Mildred has presented the different days, the different periods during pregnancy. I think that that might give important information if you take your starting point from the clinical use of the vaccine.

If you give repeatedly a vaccine during pregnancy, that's never resembling the clinical approach. If a woman has been vaccinated before pregnancy, it's not clinical usage to do it again during pregnancy. So the most important problem is when the woman is pregnant, and then to be

treated. And that might be important then, to know at which stage during pregnancy.

DR. GRUBER: Perhaps to further consider this point, I think what is apparent and what is important to really do in these studies is to administer priming doses prior to gestation. I think this has been becoming apparent from the discussions that we had today, and presentations. And it's also from discussions that we had when we looked, or when we designed developmental tox studies for these vaccines.

There is one point, or one question that I wanted to ask the experts. We have been recently considering, rather than giving multiple doses to the same group of animals during the period of organogenesis—let's say, between days six and 18—to really divide the animals into subgroups, and to dose certain groups at certain days of gestation only—for instance, to do it at day four, days six to ten—so that the animal is dosed then only once, or a given group is dosed only once. So of course they have been primed prior to gestation, or prior to conception. And

then they receive one additional dose during gestation only. How do the experts feel about this? And the reason why this is done is because we think that, especially if you look at vaccines targeted for adolescents and adults, many times you don't really give multiple doses to the human target population. So how do the experts feel about this type of design and schedule? DR. CHRISTIAN: I'll start, and see if it can be controversial. I think the whole problem is the question. And if the question is inadvertent exposure of a woman who becomes pregnant, that's one question. If it is intended exposure, then the design is different. And there are vaccines with extended exposure during pregnancy. When it's intended exposure, it should be started during the pregnancy, because that's the clinical use, and you know that the response will be developed during the pregnancy. And one might want to do that then with multiple groups during pregnancy, so that you could see the effect of how long it takes to mount the response during a pregnancy and when it's most effective. And that might be combined with an efficacy study, to evaluate at the same

time both the effect on the pregnancy and the efficacy of the treatment.

If it's inadvertent exposure, as might occur when, let's say, we go to a country and just inoculate everyone—And many times certainly there are some countries where the people won't say they're pregnant. That would be against it. So they get inoculated. And now you have all different times of exposure. There it would be probably most appropriate to see the maximum response that can be maintained over the duration of the pregnancy. And a priming dose in that case would probably be appropriate, so that you could build up to the maximum response.

So it's really what question. And that, again, goes to the case-by-case use.

PARTICIPANT [In Audience]: Millie, are you talking priming, or frequency of dose? I guess I'm getting a little confused.

DR. CHRISTIAN: Well, actually, both. You'd want to do it before pregnancy, and then a booster shot to make sure—And you'd have to have some data, probably from non-pregnant animals, to know how to get to the maximum response.

Because the question would be: At the time of maximum response, what would be the outcome of that pregnancy?

PARTICIPANT [In Audience]: So basically, potentially a dose prime, and then a single administration at that time point? I'm just trying to understand. Versus several doses, you know, gestation days--

DR. CHRISTIAN: If the question would be-PARTICIPANT [In Audience]: --six, ten, and 12, or
something.

DR. CHRISTIAN: Yes. Would it affect implantation? You might want to do one before--

PARTICIPANT [In Audience]: Separately. Okay.

DR. CHRISTIAN: --mating; then one around the time of implantation; one at the time when peak morphologic development is ongoing; one when there's fetal development.

And depending on the pattern of the response for a particular vaccine, the separation or even the need for additional doses would have to be determined. You know, if you can mount a response that's going to last the entire

gestation, then you wouldn't give another shot.

DR. VERDIER: Just one remark regarding the difficulty to scale the vaccine administration, compared to the gestation period. The effect of the vaccine will not be immediate. I mean, you cannot say, "Okay, I will give the vaccine on day six of gestation to evaluate the potential adverse effect at this period of the gestation," because in fact the vaccine effect will last for several days, and will not start immediately after the administration.

That's why it's quite difficult to adjust the vaccine administration with the gestation schedule. And that's why I think we should say, okay, we start--Perhaps we should consider a very large period and say that, okay, we give the product on day six of gestation, in order to cover day six and perhaps the next ten following days.

Unless we want to evaluate the toxicity of one chemical constituent of the vaccine. But I think in this case, that's not the right method. If you want to evaluate the-DR. CHRISTIAN: That's a different question.

DR. VERDIER: That's a different question. I mean, in this case we have to refer to the ICH5 guideline, and study the

teratology of chemicals by normal way. But I think that's not the discussion now.

DR. CHRISTIAN: No. Maybe I was misunderstood. If one knows when the peak response is present, you might have to give it before mating so that for the duration of the most sensitive period, let's say, in a rat, essentially days six to 20, and possibly staying in maternal milk--And going over and being exposed that way. It might be fine to give it ahead of time, if you had that long a duration of response. If not, one might have to give an additional booster shot, or even two, before mating.

And that's why those designs--You notice there was one that had four pre-mating, and it started way out six weeks before mating, because it took that long to build up the maximum response.

DR. VAN DER LAAN: What do you mean with "the maximum response"? What's the most risk-full effect during pregnancy? Is that the existence of antibodies? Is that the transfer of antibodies through the placenta? Or is that the increase of cytokines, interferons, and all of those other elements?

I have the feeling that we should be aware of where we are talking about. Are we defining the maximum response as the antibody response, or other types of responses?

And that's also a question to Dr. Barrow. In his talk he indicates the selection of species based on the placental transfer of the antibodies.

DR. BARROW: Yes, that's a good question, to which I don't have an answer. Perhaps I could pass it over to another member of the panel.

[Laughter.]

DR. CHRISTIAN: Out of naiveness, like most of immunotoxicology, this is a rapidly evolving field. We don't have--Certainly, I don't have all of the answers. But what I was talking about in terms of maximum response, what we were looking at was maximum levels of antibody production.

Of course, with the placenta we know that the permeability of the placenta, and the passage, and the way it goes across the placenta, change with gestation; with the placenta becoming more permeable as gestation continues. So that, again, is changing with time.

And you're exceptionally correct with the cytokine production. We are concerned about that, because that would be what would induce a potential response that's secondary in the conceptus. However, whether or not we know what to measure certainly would be on a case-by-case basis, and modeled for that particular compound.

DR. HOLLADAY: I'm speaking from an immunotoxicologist's perspective. But clearly, there are data that different immunotoxicants have different windows of susceptibility prenatally. Chlordane is a good example; lead is another good example.

I think of immunosuppression typically in the work that I do. And in the case of this meeting, what I'm hearing so far, I'm not overly concerned about the effect of vaccines on a postnatal immunocompetence. My thoughts are more in line with, I suppose, exaggerated immune responses, hypersensitivity disorders, possibly autoimmunity.

And I think now about a paper recently that came out by

Anser Ahmed [ph], who exposed animals to one low-level dose

of diethylstilbestrol prenatally; carried these animals

until they were geriatric. And from all parameters

assessed, they appeared normal immunologically, until a secondary DES challenge was given. And at that time it was shown that their cytokine production profile was skewed in a direction that would lead one to predict they might be more prone to develop an autoimmune disorder.

I could almost see that type of thing happening with a prenatal maternal immune stimulation that skewed the fetal immune development such that it could be a very difficult thing to pick up, but in the right person at the right time with the right environmental exposures or combined exposures, we might see a phenomenon like this DES phenomenon. It's going to be difficult to test for and to show, however.

DR. CHRISTIAN: I think one of the things we must keep in mind is that these are screens. And as such, we're doing the best job we can do with our current level of knowledge. It's not really a research project that one is doing when doing the initial screening for potential effects.

But we are totally dependent on the research area for identifying what potential effects we should be looking for. And it's that combination then and development that

will occur with time. So we can't see things as set in stone.

The reason I put out the original studies was, at that time what people were worried about was malformation. Now we're worried about functional alterations. But we don't truly have all of the ways of looking at it yet. We've seen it with immunosuppressants, with immunotoxicants. But if we use those tools for general screening, we may not be sufficiently expert to have relevant information right now. And perhaps some of those things even will not be relevant in the future, but that's the development of research. And we have to consider them. And I think that's part of what we're trying to do here. Should we add it as a part of the general screening pattern? I can tell you, with other compounds that are immunosuppressant we have seen, just as Ralph has seen, effects that don't occur until late postnatal, after puberty. And that's the first they're picked up, with increasing severity.

But it would be impractical for us to do lifetime studies, as well. So what we're trying to do is figure out what can we do on a practical basis in a species that, at least as

much as we know, would mimic the human clinical situation in terms of response to the vaccine, and make sure that there is exposure of the conceptus at some interval that was developmentally similar to the human conceptus.

MR. RENEE [In Audience]: My name is Foulouse Renee [ph], from GSK Biologicals.

Maybe as a feedback to the FDA, the panel, and the audience, I could explain how we design our reproductive toxicity studies at GSK. We do prelim studies, where we test in more than one species immunogenicity. And we select the dose on the basis of the prelim study, as well as the species. Very often, it is the rat.

Then we have for the pivotal study, we have all of the animals which are pre-immunized 30 days before mating, and all of the animals which are immunized only during pregnancy. Now, we immunize besides day minus-30 all animals on day six, 11, 30, 50, of pregnancy. So we try to have the vaccine present during key moments of development of the embryo--fetus.

So we try to maximize the exposure to the formation. And we have good evidence for immune response at these days.

We go for caesarean section at the end of the pregnancy for half of the animals, and we go for half of the animals to day 21 or day 25 after birth.

Now, after birth we follow the classical parameters, and include also postnatal development, neural development, by assessing the acquirement of the flexes. And we believe that this is maximizing the exposure. We are not looking for optimum levels of individual antibodies. And this has been acceptable everywhere in the world till now.

MR. : I probably missed this, but did you also have at the--what was it?--28 days after birth, did you, besides neurological evaluation, did you have immune function evaluation?

MR. RENEE [In Audience]: What we do is we do the neurological assessment of the pups at day 21. And if there are effects seen, then we can prolong until day 25. Now of course, we follow body weight and other parameters after birth. And we take antibody samples at day four, when we cull the litters to standardize the litters. And we can compare antibody levels at day 21 or day 25. And this is a good indication of exposure to antibodies coming

from the mother by the milk. Very often, we find higher levels at day 21 or day 25 of age than on day five, for instance.

MR. : But you don't do any antigen challenge assay or anything like that?

MR. RENEE [In Audience]: No.

MR. : And do you do any immunohistochemical analysis of the immune-related tissues at that point?

MR. RENEE [In Audience]: No.

MR. : Okay.

PARTICIPANT [In Audience]: Could I ask either the panel or our colleague from SmithKline to frame this question about interval and timing of dosing?

You know, I see two different kinds of vaccines that you might want to do these studies for. One is the sort of vaccine that you might give only one time, like flu or tetanus, during pregnancy; versus something that I'm very concerned about, sexually-transmitted disease vaccines, where you might give vaccines on some schedule like zero-one-six, or zero-one-three-six months.

And there, the individuals who are participating in an IND trial, in addition to being at risk for sexually-transmitted diseases, may also be at risk for pregnancy. And so there you would be getting a very different kind of vaccine schedule than you would for tetanus or flu. And would that affect this timing and interval of dosing in these repro-tox studies?

DR. BARROW: Yes, I think we would have to design the study accordingly. But we can't actually get away from giving animals a pre-mating vaccination. Because gestation is so short in the animal, we need to give time for the maternal response to develop; which of course wouldn't be the case in the human.

MR. WYAN [In Audience]: Hi. This is Michael Wyan [ph], from 3M Biologics.

We have hundreds of vaccines, both used in humans and veterinary vaccines that have been given to a number of different animal species. And we also have human beings that are exposed to different infectious diseases while they're pregnant, naturally exposed to infectious diseases.

My first question is, are we concerned? Are we testing whether or not an immune response has deleterious effects on the fetus? It would seem that we have ample evidence that the normal physiologic immune response is certainly not a toxic reaction.

Now, we heard Mildred Christian say that even in some of these animal studies you could have an irritation on the skin that could result in effects on—I forget what it was, Mildred. Viability of the pups, or whatever. So we know that general systemic reactions, such as inflammatory reaction, could have that kind of effect. But I mean, is that a toxic reaction? So I guess my question is, first, are we testing that?

And secondly, it seemed, based upon some of the things we've heard yesterday, our biggest concern would be an immune response that would cross-react with specific tissues or specific antigens. It might be mimicry, or it might be some other mechanism. So my second question is, are there any examples where we think that fetal antigens would be different than adult antigens, and would pose a different toxic profile to the vaccine?

So I guess part of me thinks that if you could examine a vaccine for tissue cross-reactivity and for safety in tissues from an adult, what's different about the fetus that's going to make this somehow a different problem? Are there any examples of a vaccine that is safe in adults, but is unsafe in children?

DR. BARROW: I'm not saying it's unsafe. In fact, I think the opposite. One example we could use are the group B polysaccharide meningococcal vaccines, where the induced antibody has been shown to target polyciliated molecules, such as neural adhesion cell molecules, which have a different form in the fetus to the adult.

In the fetus, these molecules are polyciliated and are targeted by the antibodies. In the adult, the molecules have been deciliated, and are no longer targeted by those antibodies. So that could give lead to a completely different reaction in the developing animal than in the adult.

PARTICIPANT [In Audience]: But I'd just like to ask Paul with that--and that's correct--has anybody studied that in an animal model in which--Now, here is a great example of

cross-reactivity. And we've heard all about all kinds of models for immunotoxicants and for immunosuppressants. But here's a vaccine, and when tested in an animal model, a non-human primate or another model, do the offspring develop any kind of neuronal injury?

DR. BARROW: No, they don't. At least, we've not found any adverse effects so far.

MR. FREES [In Audience]: Lou Frees [ph], ID Biomedical. We've heard a lot of discussion of the need for the conceptus to encounter optimal levels of antibody in the mother, potentially cellular immune responses in the mother; also, to be exposed to vaccine at particular critical time points during development, as opposed to merely the maternal immunologic response.

I think one thing that strikes me as very important, coming back to one of the things that Dr. Christian demonstrated, is that I will readily concede that it is possible, by pounding a pregnant animal with enough doses of vaccine, to achieve an exposure. All those exposures in one treatment group are capable of injuring a pregnant female animal, and thereby her conceptus.

So I would only advocate that we plan these trials very carefully with multiple treatment arms, not every one of which is going to answer every one of these questions.

My second point would be again coming back to Dr. Christian for a moment, and reiterating something I said yesterday.

It is not clear to me how doing a trial of an adjuvant only is of necessity for a regulatory package for registration; since the adjuvant only will never be presented to man.

I can see how it's a vital tool to the sponsor in understanding their product. But where the practicality is difficult or the additional manipulations that have to be added to make an adjuvant-alone study possible--many induce toxicities of their own--why is it necessary, or even desirable, to have an adjuvant-alone component to a reproductive toxicity program?

Clearly, if your vaccine demonstrates it, then the onus is on the sponsor to sort out what component of the vaccine is producing it. But if the vaccine, as it will be presented to humans, is benign, what's the additional benefit of an adjuvant-alone package?

DR. CHRISTIAN: What I presented wasn't a full package of an adjuvant alone. Rather, it was a novel adjuvant, which the sponsor wanted to know if it was toxic in and of itself. And what we saw was that it was the adjuvant that was quite irritating and produced the responses in the dam. And as a result, they changed the formulation and got another adjuvant, and went to one that was more standardized.

I think that when there are novel adjuvants, though, particularly in terms of developmental toxicity, it's a very good idea to study that, just as you would a vehicle or a placebo in a general tox study. Because you want to know if that is affecting the development of the conceptus. And if nothing happens, well, that's fine.

But by having a single arm there at the maximum dose, it sort of gives you a quick way to find out if something should happen at your high dose, whether it is the adjuvant. Although you're quite right—and I think this was your point—that it is in combination possibly different than it is alone, as well.

MR. FREES [In Audience]: Yes, that's right. In combination it may be radically different.

DR. CHRISTIAN: Uh-huh. What we saw with that particular one.

MR. FREES [In Audience]: And that's the important point--DR. CHRISTIAN: Sure.

MR. FREES [In Audience]: --for the registration of the product--

DR. CHRISTIAN: That's right.

MR. FREES [In Audience]: --for the sponsor. And the reason I bring this up is because, you know, the FDA is extracting opinions here. And the issue that they have to deal with is registration of the product. I have to deal with knowing what my adjuvant does, and whether or not it's toxic.

DR. CHRISTIAN: It's going back to the old thing: What is the question? And where are you in this stage of development?

MR. FREES [In Audience]: There are two different ones here.

DR. CHRISTIAN: Absolutely.

PARTICIPANT [In Audience]: Could I add something? I just wanted to say that it's not necessarily [inaudible]-MR. : Use the microphone.

PARTICIPANT [In Audience]: It's not necessarily true that you'll never clinically study the adjuvant alone. Because there's instances in our own company where we have used adjuvant to compare reactogenicity. And so I think including an adjuvant-alone arm in some of your studies--I would be surprised that a sponsor would discover that their adjuvant is irritating in a repro study, though. You know, it seems that there should have been something before that. DR. CHRISTIAN: Irritating the conceptus.

DR. VAN DER LAAN: I think what Dr. Frees indicated, that if he as a sponsor wants to know what the adjuvant does, it's also for me as a regulator important. And we have no different interests in that respect.

It's a little bit a "chicken-and-egg" problem: What's first? And you as a sponsor want to know, "What is the effect of the adjuvant? What dose should I use in combination with my antigen? And what are the toxic effects of the adjuvant alone, then in relation to the

antigen?" And I think those are important questions that cannot be handled only in a combination between an adjuvant and an antigen. You should need, from my perspective, to have also data on the adjuvant alone.

MR. FREES [In Audience]: All good points. I'd only like to add one thing. If I have to physiochemically alter my adjuvant to study it alone, what have we learned?

MR. : Well, yes, that might be a point. But I mean, think back to the list that the lady presented yesterday of the things that ought to be done to test the safety of an adjuvant. You know, there were some interesting "yes's" on there. One of the "yes's" was genotoxicity.

Well, I mean, do you want to do a genotoxicity battery every time you test a vaccine product of an adjuvant? You know, the easiest thing to do is to have the sponsor having done that, and make reference to it.

DR. GRUBER: I had a comment to make. I think we've discussed the issue of adjuvants--given by itself, in its own package, in a [inaudible] master file, combined with

the vaccine antigen, and so forth--on yesterday. And I really see that we see all the points.

And regardless of how much trouble I'm going to get into here, I mean, I would like to stress that I think the points made by the audience here are well taken. You have to really ask yourself: What is the best information that we can get to clearly evaluate the safety of the final vaccine formulation? And the type of studies that we do should be driven by that question.

But if I may, I would like to get back to the discussions of reproductive toxicity study designs, per se, and animal models. I am struggling with how to really tease out and look at potential developmental toxicity that may be induced by potential intrinsic toxicities of the vaccine antigen or other components in the vaccine formulations; versus the immune response.

And what I think, what I have been hearing this morning and this afternoon, is that looking at the potential for--let's call it immunopathologic effects, for lack of a better term--doing the studies that we have been suggesting them to do in the guidance document, is probably not going to be

feasible, given the differences in immune system maturation in the animal species that we have available to us for these types of studies, compared to the immune system and its maturation in humans.

So what do we have to do? Should we restrict developmental toxicity study designs to segment two studies, or extended segment two studies, in order to just answer effects on organogenesis or fetal development? Or should we extend the studies? Or should we do additional studies to evaluate post-weaning assessments, if this is what needs to be done to look at potential effects on the immune system of the offspring?

And right now, I'm really struggling with if we really should require that as a sort of one-packet approach, or if we should consider what was also mentioned by industry when we got the comments to the document. Should we consider a tiered approach, sort of looking at the developmental tox study as a signal-generating assay? And if we don't see any signals, we still can't say for sure, of course, that "My product is going to be safe when given to a pregnant woman."

Or should I go ahead and also look at immune response evaluations by doing additional studies? And that's something that I would like to have discussed, not only by the panel members, but I would also like to hear how the audience and industry feel about this approach.

DR. CHRISTIAN: Yes. If I can, let me just give you one thing that might be your first tier. And that would be, in the same species, compare the immune response in a non-pregnant and a pregnant animal, and see if there is a difference there.

And then, on a tiered approach, look at what we would usually look at in the parameters we can recognize.

Because even with first trimester insult in a rat or rodent model, we had the progenitor cells. Even if it isn't fully developed.

And you're going to get certainly the typical responses, with the exception of function, by C-section and certainly by postnatal day 21. You're going to see it as by ability effects and weight gain effects. They'll be noticeable. If you want to add in some function, fine.

But that whole field is evolving from "behavior," which 20 years ago we finally got changed to "function." But now "function" isn't fully defined. And so that's an evolving area that will change with research.

What I would think is the first tier, if they had exposure during gestation and were allowed to go to weaning. That should certainly give you a pretty good initial tier one screen in one responsive species. And I would just suggest that as a good place to start. Then, if you see effects, you go to the next levels.

DR. GRUBER: Thank you.

4A

MR. RUSSO [In Audience]: [Inaudible] Russo [ph], from Merck.

I think that the discussion was perhaps too focused on immune-mediated toxicity, to the extent that we struggle as it is to develop animal models that would be suitable for even assessing the efficacy of new vaccines that we are developing. And to really focus on immune toxicity-[Tape Change.]

MR. RUSSO [In Audience]: --the way to do is to really assess whether there is this thing out there, and

then trying to figure out how to do it. We have no discussion whatsoever here in a relevant model for cell-mediated immune responses. Most of the discussion was on antibody-mediated toxicity.

There was some presentation in terms of cell-mediated immune responses, but nobody discusses the host of genetic-controlled immune responses, even in animal models where parasites may skew the responses according to TH2 types, and so forth and so on.

DR. GRUBER: Yes, you are absolutely right. Just I wanted to answer this. I guess we are all a little bit uneasy to say that, okay, we're focusing, if you look at immune responses, at antibody response. But the reason why this is, is because we perhaps have the best assays validated and reproducible as is to look at antibody responses.

If you start discussing cell-mediated immune response, the question is: Where do you want to start, and where do you want to end? And do you want to throw in the cytokines profiles that you could potentially anticipate?

I guess I know that that is something that needs to be addressed in the guidance. I feel, though, that perhaps we

should give some thought regarding how much and what to assess in terms of immune response. Should it go beyond antibody evaluations? Should it perhaps be driven by pilot or preliminary studies, to see what vaccine antigen do I have? What type of immune response do I expect for it to elicit?

Is it going to be more--Sometimes the adjuvants that I added will sort of shift the immune response from a TH1 to TH2. And so that you may want to say, "Okay, I'm going to look at certain cytokines, or certain cell-mediated responses."

But I'm not quite sure if we should build in as a first evaluation sort of a full assessment of the potential immune response repertoire. Because it could again lead us to data that may be very hard to interpret, at least in 2002.

I mean, I'd like to hear more comments. If you feel it's necessary to evaluate more than antibody responses, you know, we would like to hear this. But I think we're going to get--You had a question, a comment to make?

DR. HASTINGS: Well, Marion, can I follow up? This question is directed to Mercedes. For the therapeutic cytokines, have you got reproductive toxicology data for those?

DR. SERABIAN: Do we have it?

my naivete of this whole area.

DR. HASTINGS: Yes.

DR. SERABIAN: More and more, yes, we do. We are generating data--mainly, seg two studies, teratology studies--with the cytokines. Again, it depends. The big thing there is antibody development, and basically clearance of the material. So it's basically not effective.

But what's your--Ken, was that your question?

DR. HASTINGS: Well, just to get at that. Because you know we were talking about other immune-induced molecules that might eventually be manifested as like teratogies.

DR. SERABIAN: Right. No, you do see some of them--Well, there are teratogenic effects with some of them, yes.

PARTICIPANT [In Audience]: Well, I'm struggling a little bit in the back here, so forgive me. This may be in part

But this is an extension of the gentleman over here. And he said when you talked about your tiered approach of looking at the toxicology or repro-tox assessments, can you, instead of looking at just gross or these larger changes that you're looking through, through the entire cycle of reproduction, connect it more to what is epidemiologically relevant?

I know the gentleman from EPA made some connections between effects that he saw in animal models and studies in Inuits, etcetera. I know that there are studies out there looking at immunotoxicological effects caused by the immune system in different ways when it's stimulated in different ways. And maybe one of the panelists could enlighten me on some assays that we could use, in this sort of area of immunotox, to really make a connection between the pathology or the function that we want to look for, and some sort of epidemiological feature that is a problem out in the population?

It seems to me like, if we're just looking at just any effect, as the gentleman said yesterday, you can create an

assay just to create an effect. The issue is whether it's relevant or not.

DR. SERABIAN: I just want to, on top of that—I agree. I guess to me, when you mention this about tier, that sounds great, that's important; but again, what's the signal that you're looking for, and how appropriate is it, as to what testing you're doing?

And I guess, just kind of an editorial, when you say "immunotox" I kind of cringe. I think maybe you mean a module [inaudible]. I don't know. It's not always immunotox that you're looking for. It could be immunosuppressive. It could be immunostimulatory. And the word "tox" kind of--At least personally, I don't care for that. Okay.

Ken, do you have any suggestions as to the testing maybe?

DR. HASTINGS: Well, clinical immunotoxicology is a very poorly developed field. And there aren't that many things
-I mean, you know, I guess the most important thing you would think about doing is just the prospective cohort kind of study, where you would look to see in the children, do

they go on to develop susceptibilities to certain autoimmune diseases or things like that.

I mean, that's what happened, I believe, with cyclasporin. You find that there is a higher incidence of autoimmune disease in babies born to women who were taking cyclasporin. So I think mainly that's the kind of gross epidemiologic studies that you're kind of stuck with. PARTICIPANT [In Audience]: I just wanted to make a comment. Marion, I think you framed the question really well. I've been a little confused by the discussion. There seems to be confusion between the immune system as the agent causing the toxicity, with the immune system as being an end point in the fetus for the toxicological effects of the vaccine. And I think you really need to separate those two issues in this discussion. Yesterday, in the general tox studies, I think at least most of the consensus seemed to be that the general measures of toxicity were sufficient, and that special immunotoxicity tests as end points were not necessarily necessary. And I think that it is also true for our developmental toxicity tests.

Some of the talks this morning were very nice descriptions of the development of the immune system. And at the end of Dr. Barrow's test, he focused on the development of the immune system as to the timing of doses. But as toxicological end points, as the end points of these immune-mediated toxicities, we're not only worried about the development of the immune system, or development of the CNS, or any major organ system.

So I really think, as far as talking about end points, the emphasis should really be shifted away from the immunological system, and focused more generally.

DR. BARROW: I think the point was when we're dealing with vaccines, immunological endpoints, or in addition to all the other parameters we normally look at for other therapeutic areas,

PARTICIPANT [In Audience]: But I would ask why. Do you do that for drugs?

DR. BARROW: Yes, we do that for drugs. If we're testing a CNS-active compound, for instance, we pay particular attention to CNS development.

DR. SERABIAN: Okay, just real quick, I think that's going to be, hopefully, a focus of the next hour, or the end points. So we can continue with that.

PARTICIPANT [In Audience]: Sorry, one more question. I debated a lot whether to pitch this out here, but I'll just throw it just to see what happens.

The whole discussion about the potential issues related to vaccines and whether they cause a toxic effect to the animal model, to the patient, kind of leads to an interesting quandary. Some folks who work in vaccines feel that creating an immune response sometimes causes what some people would call a toxic effect; i.e., a swelling, redness, pain, sickness.

In some vaccine strategies, it may be a good idea to make a person a little sick initially, so that in the end they're protected from the infectious agents that actually may cause death or severe sickness or severe disease.

I wonder if by creating parameters like this we create

vaccine strategies that won't impact a person's daily life, and won't make them sick, won't make them feel any pain;

but may not in the end be as effective a vaccine as we could possibly create.

DR. VAN DER LAAN: I think you're fully right, that developing or introducing a vaccine in an animal will lead to an immune response, and the immune response is a physiological one that leads to a lot of disturbances that we have discussed yesterday, too. We indicated that, also. The characterization of the immune response is more important than the definition or than defining or evaluating whether or not that response is leading to immune suppression or other things. The purpose of your evaluating the immune response is important. With respect to the developmental aspects of giving a vaccine during pregnancy, it is important that introducing a vaccine may lead to an adverse effect. And your first effect is, of course, vaccination in the pregnant animal. But then it may also lead to an adverse effect on the fetus. And that's the problem that we are dealing with. And is the adverse effect on the fetus a direct abortion,

> MILLER REPORTING CO., INC. 735 8th STREET, S.E. WASHINGTON, D.C. 20003-2802 (202) 546-6666

or a malformation, or a functional malformation?

DR. CHRISTIAN: Yes. To carry that on, I think that the other thing that we have to have these types of studies for is ultimately in labeling. A woman is inadvertently vaccinated during pregnancy, and her question to her doctor is, "What should I do now?" And so we need to have some kind of indication.

If there are no adverse effects seen in these types of studies, at least the doctor can say, "We don't think it will be a problem." If we know that the response was such that the embryos died, then we can say, "Well, at such-and-such a multiple, we know that this occurred," also.

So remember that the adverse effect, even if it is a normal physiological response, can be a pharmacotoxic effect for

the conceptus. And that's always the two sides of the concern.

PARTICIPANT [In Audience]: I guess what I wanted to just mention was--and it follows on nicely from that--I'm no immunologist, but it's my understanding that often in the first trimester, due to hormonal influences, women's ability to mount a cytotoxic T cell response is somewhat subdued. And we see that in terms of evidence of infection

with toxoplasmic [inaudible], and other sorts of parasitic and viral agents like that.

So when it comes to developing a vaccine where we want to generate a robust CTL response, and a woman is inadvertently vaccinated in her first trimester, I think we would want to know, is there some model so that we could understand what would happen to the fetus? You know, is it going to cause an abortion? Because there must be some reason why we have a subdued CTL response in that first trimester.

And then I'll tell you, the other thing that really causes me concern is that we do these studies, and we do put something in the label to give the physicians some guidance. But we actually don't understand the influence of confounders, like women smoking through pregnancy and things like that. And then what does that mean, in terms of us getting sued because we've got something in our label?

And you know, we've done these lovely experiments in a controlled environment, and sought some understanding, and

we're trying to provide some guidance. But it's also a very scary thing to sort of embrace, as well.

DR. GRUBER: Oh, yes. Yes. Yes. I guess nobody can argue with logic.

[Laughter.]

DR. GRUBER: But I think there's one thing that I wanted to actually throw out here. And that is, we do developmental toxicity studies for preventive vaccines perhaps in an attempt to be able to possibly identify potential developmental hazard, or using these studies as a signal-generating tool. I don't think that if we put the data into the label, that that is equal with saying, "Now we're going to make a prediction to human risk." Because everybody does understand that there is a difference between man and beast.

I think that, however, not having the data is really something that Francois discussed yesterday morning: It is sticking your head into the sand. And I think having some data is better than having no data at all. But I think that the difference between really predicting human risk,

and using these as signal-generating tools, I think is an important difference that we need to keep in mind.

What I wanted to actually do before we break for coffee is-And I know this is not going to be a five-minute thing.

But we've put a question up there. And perhaps in the discussions that Paul Barrow had we've already sort of answered these questions a little bit, and we discussed it a lot yesterday. But I think this is something that we should briefly turn our attention to.

And that is the question--Perhaps it's best framed again in: My animal model that I choose should be perhaps driven by the kinds of questions that I want to answer. And if it's really that what we're going to do here is a first tier evaluation, where I'm going to do a developmental toxicity study, and I carry this out to birth or weaning of the animal models, then perhaps I'm going to choose my animal model accordingly. And if I want to look at immunotoxic, immunomodulatory effects, I may have to look at another animal model, or do an additional study.

But how do we feel about the question about a relevant animal model? Can we define it by, as we naively stated in

the guidance document, the ability of the species to mount an immune response? Or do we have to be a little bit more precise in our definition? And what other parameters do we need to consider?

[No Response.]

DR. GRUBER: Anybody?

DR. CHRISTIAN: Well, it certainly should get across the placenta, also. So you need both an immune response and crossing the placenta. Having only immune response, and it doesn't cross the placenta, it doesn't answer your question. Getting across the placenta without an immune response doesn't do it, either. So if you had none that did both, then certainly one of those would be better than none. But ideally, it should be both.

PARTICIPANT [In Audience]: I would only like to iterate a point that I made yesterday. It is that in this definition it's great, I think it's probably—The issue I have is, if you have an animal model, whatever model you select, that if you're using a vaccine modality that promotes an immune response in that species, you're probably okay.

If you're using a vaccine modality that doesn't promote an immune response in that species and is a very human-specific pathogen or vaccine modality, then you may be stuck. You know, you won't be able to address any kind of immuno-issues that are created by the vaccine. You may not be able to address some of these reproductive toxicology issues related to immune response.

You know, it's a real tough issue, because as we get more creative with our vaccine strategies, animal models may or may not become more relevant.

MS. MURSA [In Audience]: I'm Sandy Mursa [ph].

I guess I'm really confused. Because it seems to me that if what you're looking for is whether IgG crosses the placenta or not, then Dr. Barrow has outlined a nice way to figure that out. And you can determine that your animal model is probably a rabbit, and we don't have to carry on this discussion for very much longer.

But if that's not the thing, because it's hard for me to visualize--and I'm not an immunologist--but how simply IgG crossing and being available to a fetus is going to cause a

malformation. That's pretty hard for me to understand. So I think that's probably not the point.

And then, you know, you say, "Well, if it cross the placenta," but I don't know what "it" is. You know, is "it" the antigen? Is "it" IgG? Is it--I'm not sure. I don't think it's as simple as this. And if it is as simple as this, then I think you can just take and say a vaccine that mounts an antibody response against virus "X"; look for IgG; and then you never have to test another vaccine for virus "X" again. It doesn't matter what the construct is. It doesn't matter anything, if IgG is the only thing we care about.

DR. VAN DER LAAN: Let's try to go further in thinking.

Yesterday I have indicated that in Europe we have thought about a relevant animal model as an animal model in which you can induce a change. But that's not always possible.

And in this case, we have to use a case-by-case approach.

Maybe if you have a polysaccharide vaccine, then the IgG response and the IgG transfer through the placenta might be very important. If you have a live attenuated vaccine, then the placental transfer of the virus is important. Or,

as for small pox, it's thought to be that the interferon response might lead to an abortion very early in pregnancy. So it might be you should also in this respect use a case-by-case approach.

And then the criteria for what is a relevant model are much more derived from a comparison between the immunological response in humans to the infectious agent or the vaccine itself, compared to the animal model. I think that all those points have to be considered in this respect.

DR. LAMBERT: I would like to push the idea a little bit further. If we would like to develop a decavalent vaccine, and we should not be able to demonstrate immunogenicity in any species for the ten antigens, what should we do?

Should that be a good excuse for not doing a study? Should we use a species where we have a maximum of immune responses?

[No Response.]

DR. VAN DER LAAN: We are all quiet. We have no answer. I think that's the most difficult situation, and it's very difficult to handle. But maybe there are people in the audience that would indicate, "Okay, animal studies are not

necessary. You can directly go into man." I think that nobody has that opinion. But we have to struggle with that. I have no definite answer. It depends on the case. DR. SERABIAN: Again, look behind you. I think that's one of the--Yes.

Any more comments with respect to the question I have up here now? No? Thoughts? Okay.

PARTICIPANT [In Audience]: Obviously, I'm working in an area where this is directly relevant, so--And the gentleman from Merck yesterday sort of helped answer this. You know, it's sort of a double-edged sword. You can switch to the animal system where--You know, like taking animal antigens or taking an animal-suited or a model-suited virus. Let's just take a virus, for instance, as a good example.

Let's say you're working with a human pathogen and there is an animal model, but it's not the human pathogen; it's an animal-adapted pathogen. You can use that animal-adapted pathogen, but you have to recognize that there's going to be big differences between the two, because it's an animal model and it's not going to be a perfect model.

But the challenge is, from a vaccine production point of view, that you have to develop these two things together, in the same manner, in the same way, to really adequately test the different relevant toxicological issues that may be related to these things.

And God forbid that the pathology or the pathogenic features of the animal model differ in any way from what happens in the human. Then you know, it's another whole issue to deal with.

So I don't know, it's sort of a very, very difficult problem. And I would love to hear folks who may have more experience in this give some sort of advice, because I think there's probably quite a few people in here who will be faced with similar problems related to this.

DR. VERDIER: I would just like to give one remark regarding the question behind me. I think it's really difficult to answer to this question without more detail about the specific vaccine. Because you have to consider the human data. Do we know something about the same infection in humans?

We have also to consider the nature of the vaccine. Is it a live viral vaccine? And in this case, the risk can be higher compared to a recombinant protein, for example. Do we have a strong adjuvant which can trigger a different production, or do we have no adjuvant at all?

So I think when we will write the non-clinical safety package in the IND or in the pre-IND, I think we have to take into account all of this information; and particularly, information regarding infection in humans. Do we have data which indicate that the pathogen can trigger abortion or can trigger cytokine release which can lead to abortion?

We were discussing with my neighbor about the different potential strategies according to the nature of the vaccine. And I think that if you deal with a live viral vaccine, it's very different compared to a recombinant protein. And we have to take that into account. We cannot answer "Yes" or "No" to a question. We have to take globally all of the information available.

DR. SERABIAN: I think that's an appropriate time to break. It's about 3:15. How long do you want to go? Till 3:45, then. Then we'll come back.

[Recess.]

DR. SERABIAN: Okay. Basically, I'd like to introduce the two remaining people on the panel here that have not been more formally introduced.

Dr. Verdier, I don't think I need to read his introduction, since you know him quite well from yesterday and today.

And he will give a very small presentation—two or three slides, I think—to just start us off.

And Dr. van der Laan, he is a pharmacologist and toxicologist. Since 1990 he is head of the preclinical assessment group of the Medicines Evaluation Board of The Netherlands. It's located at the National Institute for Public Health and the Environment. In this function, he is responsible for giving advice on preclinical safety aspects for The Netherlands College.

On behalf of the Medicines Evaluation Board in The

Netherlands, he is a member of the Safety Working Party,

the SWP, of the CPMP. In the SWP, he was responsible as a

rapporteur for the note for guidance on preclinical, pharmacological, and toxicological testing of vaccines, as well as on the revision of the note for guidance on repeated-dose toxicity, which included immunotoxicity aspects.

IMMUNOLOGICAL ENDPOINTS

PRESENTER: FRANCOIS VERDIER, PHARM.D., PH.D.

PRODUCT SAFETY ASSESSMENT, AVENTIS PASTEUR

DR. VERDIER: Thank you, Mercedes. I will just briefly introduce the subject about what are immunological end points. And I think we have to ask the following questions.

With the immunological end points, we want to confirm the relevance of the animal model. And we were speaking about surrogate markers, antibodies in the mother or in the fetus. An antibody measurement can be used as surrogate marker to confirm that the animal model is partially relevant.

We can use also immunological end points to evaluate potential adverse effects. And we will see when and how.

These immunological end points can concern the mother, the fetuses, or the pups, on any other model.

To illustrate these immunological end points, I would like just to show you this graph which represents the cytokine balance during the pregnancy. And it's true that if you interfere with the cytokine equilibrium, you may induce pregnancy loss. So you can imagine that if you give a live virus and if you trigger high production of interferon, you can perhaps impair the pregnancy.

So about immunological end points, I don't know if we should measure the cytokines, but at least we can imagine that if we give a strong stimulus, if we give a live virus which will really trigger a strong cytokine change, you may have changes in the pregnancy.

Regarding surrogate markers, I think when we are measuring IgG we are not measuring IgG for the potential toxic effect. We are measuring IgG to show that we are triggering something to show that we have selected an animal model which answers to the vaccine.

And I have just reproduced here what we are doing. And Paul presented this kind of treatment design in his

presentation. In fact, we are immunizing the animal before the mating, during the gestation period. And also, for some subgroups we are doing postnatal vaccine administration. And we measure the IgG just to show that the species is answering to the vaccine. So for me--and I hope that you will challenge this idea--in a tier one, we do immunological end points to justify the species selection and the protocol design. Only for that. And we will do the study without immunotoxicology tests. We mainly focus on classical teratology end points. We don't do cytokine measurement. We don't do functional assay by immunizing the animal with another antigen. I should admit that we don't re-immunize the pups with the vaccine, because we know that maternal immunization will suppress during a certain period the answer of the pups to the same antigen. So we don't re-immunize the pups. It is mentioned in the guideline that we may have to re-immunize the pups. Until now, on the four studies we performed, we never did that. So perhaps it's something which should be modified. I don't totally agree with that, but it can be discussed.

Regarding the tier two, I would limit immunological end points to mechanistic investigations. And I have in mind only one example, which is meninges-B polysaccharide vaccine. In this case, in addition to a classical reproductive toxicity study, you may want to do in vitro antibody binding to show that the antibody made by the vaccine can bind to fetal tissue.

In another study, you may want to show that your adjuvant, or your live virus, perhaps can trigger a cytokine change. But I would keep these investigations in very specific cases: only if we have some good evidence that the vaccine or the adjuvant can trigger some changes, and if we want to further explain these changes. But I would not do this very specific investigation in a first tier.

I will stop here, and I will let my colleagues from the panel or from the room comment on this proposal.

[Pause.]

DR. VAN DER LAAN: Shall I first give my statement, and then we have the general discussion?

DR. VERDIER: Yes. Go ahead.

DEVELOPMENTAL ENDPOINTS

PRESENTER: JAN-WILLEM VAN DER LAAN, PH.D.

DIRECTOR, PRECLINICAL ASSESSMENT GROUP,

MEDICINES EVALUATION BOARD [RIVM], THE NETHERLANDS

DR. VAN DER LAAN: I have not prepared a presentation as

the other chairpersons for the sessions. I have only one

point that I specifically want to bring in the audience,

and a point that we have discussed repeatedly in our

European clubs—the Safety Working Party, and the Small Pox

Working Party—early this year.

And I think it's important that reproductive toxicity testing is not a purpose in itself. And that's important. Vaccines are derived, by definition, from infectious agents that cause human diseases. And to get insight in the risk of vaccination during pregnancy, we can learn a lot from the clinical experience with the pathogen exposure.

So for the live viral vaccines, as influenza, rubella, the mumps, the measles, and variola, the human pox—there might be others—we can learn a lot from the epidemiology from the illness itself.

And then, we have to think about, if the complete market will market the specific vaccine, what will be the decision

for the treating physician? And as the U.K. is part of Europe: To treat or not to treat? That's the question. And that depends on the situation. Sometimes, passive immunization during pregnancy is more important than giving a vaccine. And we should that clinical background keep in our minds when we are discussing reproduction toxicity testing.

That's just another aspect. And with respect to the other developmental end points, just because of these types of examples we know the developmental effects of rubella and human pox. I think those are not based on the--And Dr. Holladay is not present here behind the table, but he explained that that type of effects might also be immunological effects. But those types of end points are, of course, still important in reproductive toxicity testing.

Anybody from the audience has any comments on these statements from Dr. Verdier or from me? Or anybody from the panel? Yes.

MS. SHEETS [In Audience]: Hi. I'm Rebecca Sheets. And I just want to be clear to everyone in the audience: I'm not longer at FDA. so I'm not speaking for FDA.

It is my impression that animal models—I mean, we've had a lot of discussion about what's a relevant animal model, and how difficult that's going to be. It's my impression that animal models are inherently imperfect, and they may or may not be predictive of the human situation. So to expect the animal models to predict subtle effects, like the immunological effects, it's going to be asking too much of the animal models.

I think it's warranted to do these kinds of studies and to be looking for gross effects. And if you see such gross effects, then doing further studies in a second species or that sort of thing may be warranted. But I think the only way to get at these subtle kinds of effects is really going to be studying humans and epidemiology. And, yes, there's a lot of problems with doing epidemiological studies, as well.

But I think that it's asking too much of these imperfect animal models to be looking at very subtle, downstream

effects that may or may not be seen, may or may not be able to be measured, and in the end may or may not be relevant.

I think looking for the gross effects is really all we can ask of these animal models. So that's just my scientific opinion.

DR. VAN DER LAAN: Anyone from the panel? Marion?
DR. GRUBER: I'll hold my comments.

MR. PARKMAN [In Audience]: Hi. I'm Paul Parkman.

I listened all day yesterday and today. And it seems to me that from what I've heard, the evidence that past vaccines are toxic, either reproductively or developmentally, in a way that preclinical laboratory studies can help, is extremely rare. Rubella, of course, is one of them.

It seems to me likely that the need for these tests is driven by the need to have something we can say in the packet circular about these matters. And given this, I think the most useful approaches might be two-fold.

One is, in the unusual circumstance where there is some reason, from epidemiology or clinical medicine, to suggest concern—and rubella might be a classic example of that—then the sponsor should be required to develop studies that

are tailored to answer the specific questions that are raised. And so some sort of screening test wouldn't be particularly applicable here.

For everything else, it seems to me that a toxicology test should be sufficient in one species, using the "best animal model"; recognizing that often the best model is probably not well defined.

But for these studies I would think probably reproductive toxicology would not be required, unless there was some new and really convincing evidence of a certain need for them. That would be sort of my take on it. Thank you.

DR. VAN DER LAAN: Anybody, comment?

DR. GRUBER: Yes. I have a question for Dr. Parkman. How would you define evidence for the need of developmental toxicity studies in the absence of clinical and preclinical data?

DR. PARKMAN [In Audience]: Well, what I was referring to as evidence was evidence from epidemiological studies of the disease or a clinical study of the disease that suggested that the organism or organisms closely related to

it had some reproductive effects that it was important to define.

DR. GRUBER: Well, thank you. That's, of course, one point of view: To have reproductive toxicity studies only for those types of products for which the "Y" type disease would suggest an untoward effect on fetal development.

However, as we have been pointing out, we're really faced with a really novel area of vaccines, product classes, combinations of products, the introduction of novel adjuvants; that I think that we may be going down a dangerous path to really dismiss all these issues and just look at "Y" type disease. But that is my personal opinion, and I guess that is something that we can discuss a little further.

PARTICIPANT [In Audience]: I think that one of the problems that the audience has been grappling with is this almost necessity to have one type of study fits all cases. In reality, we could look back and say with our history of vaccination we really have no history of reprotoxicological problems.

However, we're all very excited, because we're facing a whole new era and set of opportunities in developing vaccines. And we're trying many new approaches. Maybe in tailoring these guidelines and so on we have to take that into consideration, that in a situation where we're using live viruses, attenuated live viruses, one has to look about transfer.

If the goal is to use cytokines as adjuvants, then measurements of cytokines would be relevant. And maybe we really are going to have to consider this based on the different categories of vaccines that are going to be developed.

DR. VAN DER LAAN: Anyone to comment on this?
[No Response.]

DR. VAN DER LAAN: I think you gave a differentiation, but you have given maybe voice to the audience that you agree that we are going this way as regulatory authorities in setting up these guidelines, providing this guidance to the industry.

Are there other opinions in the audience not willing not follow this guidance?

MR. HOPKINSON [In Audience]: Hi. I'm Bob Hopkinson [ph], from DynPort Vaccine Company. I'm also no longer with the FDA.

I just wanted to comment. I don't have a strong opinion in this area, but just in the world of drugs where I was before, you talk about what are the implications in terms of the label with these studies.

And one area that comes to mind is the quinoline antimicrobials. Early on, multiple species tested, finding cartilage toxicity. Getting into the label--Products never being used in pediatric populations, or very infrequently being used, and the use essentially off-label for years. And it's only recently with resistant pneumococcal and other types of infections where FDA is being asked to consider looking at pediatric studies and trying to get some additional information.

Epidemiology studies really can't be done if you've got something on the label related to an animal toxicity which may or may not be relevant. And so, just another thing to think about in terms of our thinking process. If we search for a species that may cause an effect and we find it,

okay, then you have to decide, well, does that mean anything? And it may preclude actually getting any epidemiologic data, because no one is willing to use the product in a pediatric or gestational period.

DR. VAN DER LAAN: I think that that's indeed an important statement; that you can also abstain from giving a vaccination during pregnancy. But the problem is, as indicated by--

[Tape Change.]

4B

DR. VAN DER LAAN: --this risk assessment, where you can not always avoid it.

DR. CHRISTIAN: I wanted to say that I agree with your tiered approach. And I think that to look for specific end points that are functional without a reason, in an initial run-through, with no other effects, would be pushing the model perhaps beyond what we can do at the first tier for screening.

But I believe that that first tier is important to do, because we don't have good data as a rule on the disease models themselves. And we're coming up with so many new things that it isn't just the immune response, which was

what we were first looking at, if you could even define what we were considering an immune response; but rather, the multiplicity of the different types of agents that we're using.

And I don't think, or I hope nothing was interpreted as "There's only one way to do this." It's certainly a case-by-case basis, where the sponsor is responsible to figure out what they know about the compound and what's the most appropriate way to test it. And I think that's just axiomatic, and should not be forgotten.

Now, if they have a reason they think it is going to be immunotoxic or immunosuppressant, then you test for those things, just as you would if you thought it was CNS-selective and doing something there, or toxic to the liver or the kidney or something else. You would put in any points that you wanted to look at to identify effects in the adults.

But I believe that ethically, before we go into pregnant women or have inadvertent exposure of pregnant women, we have to do the best test using the current tools that we

have--admitting that they are inadequate; but they are still better than nothing.

DR. GRUBER: I couldn't agree more with your statement,
Millie. And I really also wanted to say that I am
supporting Francois' suggestion for the tiered approach
that is no longer up on the screen.

The question, however, that I feel we somehow have to answer, coming back to what I said this morning—We wanted to hear comments; we wanted to address concerns raised by industry in response to us publishing this guidance document. At the end of this day I'd say: Are we back to the ICH as far as a guidance document? Do we need an additional document at this point?

So I see people shaking their heads, nodding. Jan, you wanted to say something?

DR. VAN DER LAAN: I think that vaccines are in their concept so different from conventional products that it might be helpful to the industry to give guidance in addition to the reproductive toxicity testing document from the ICH.

I'm wondering why only at this point the FDA has made a guideline. But I would say, have a guidance document. And I have learned that you are preparing that for the development of vaccines.

I have a question also on the tier two to Ken Hastings. As we know, in the immunotoxicity discussions for the conventional product, we have given a first look at the developmental immunology of immunotoxicity testing; and in that way, a function test at day 21--day 20, 21, or the period of weaning.

What is your feeling? Should that be a standard approach for vaccine?

DR. HASTINGS: Actually, I was thinking about the one slide that Ralph showed, Bob Chapin's very complicated but nice repro-tox testing scheme. And it did have the immunotox end points.

As you know, in the immunotoxicology guidance we say that if you know that a compound is immunosuppressive and you know it's likely to be used in women who might become pregnant while taking the drug, that there should be an evaluation and a repro-tox study, and basically we said a

histologic examination of immune-related tissues. And we kind of left it at that.

And the reason for that was that we felt like when we were writing the guidance that there wasn't enough information to make a recommendation about a functional assay. Now, Ralph and some other folks have actually worked very hard to develop these functional assays to be incorporated into repro-tox studies. And I would like to see a lot more work, or some more work, done to that, so that maybe we could make that recommendation.

And I think that the work that Ralph and Greg Ladix [ph] and some other folks have done purports, you know--I won't use the term "validated," because that's a heavily weighted term. But where we could feel more comfortable about that, then, yes, then at that point I would like to see that incorporated. And we probably would change the guidance at that point.

Did I answer your question, Jan-Willem? Yes.

MR. RUSSO [In Audience]: I'm [inaudible] Russo, of Merck.

I'm not sure that I understand the logic behind that.

Because you say if you have any reason to believe that the

drug that you are developing is immunosuppressive, then you do this recommendation. I guess it's because you want to assess whether or not this temporary immune suppression will affect the fetus by exposure to viruses or microbiological agents. Is this really relevant to vaccines?

DR. VAN DER LAAN: May I give that question to Francois?

Do you expect that you ever will apply the second tier testing?

DR. VERDIER: I would not include a functional test like suggested by Ken. Sorry, Ken.

DR. HASTINGS: That's all right.

[Laughter.]

DR. VERDIER: I think at this stage we want to have some gross evaluation of the vaccination on the pregnancy. It seems that we are in a totally different situation compared to chemicals which can trigger an immunosuppression. So I would be cautious about adding functional tests at this stage.

And that's why also, I think I was clear in my presentation, I would not re-immunize the pups with the

same vaccine. Because I think this can be misleading. We will observe a suppression of the B cell response, and some people may think that it's an immunosuppression. In fact, it's not an immunosuppression; it's a normal effect of vaccination of pregnant animals or pregnant women.

So I would avoid to add either an immunization with the same antigen, or I would avoid also to add function assays. But that's my very personal opinion. I think it's the opinion, also, of my colleagues from Merck. Perhaps in 20 years we will have a different opinion, but today that's it.

DR. VAN DER LAAN: Thanks.

Marion?

DR. GRUBER: Yes. I just wanted to make one comment, and I think that is an FDA comment. If you read the draft guidance, I think the issue of re-immunizing pups to further look at potential for immune suppression is something that even the guidance document did not really support.

We really said that these types of issues may need to be addressed clinically. And as a matter of fact, there are

instances for maternal immunization studies where the potential for an immune suppression in infants is addressed clinically because we didn't feel that the animal models would really give you the answer to that question. DR. CHRISTIAN: Just a comment on your question of: Do you need guidance other than ICH? I think the real problem is that the ICH guidance covers everything, but here we're not looking at a standard type of response. Because we're really testing the effect of an immune response on the pregnancy, rather than in combination with an adjuvant or whatever other things that are in this particular vaccine. And it would be helpful, because these groups generally could use the guidance. And it would save you some telephone calls, perhaps. And they would have it in better order when they come to see you, because they'd have guidance; rather than saying, "Oh, I'm going to do it every day because that's what's appropriate for a developmental tox study, " or, "I don't know that I should look to see whether it crosses the placenta, " and so forth. So I think the guidance document would be helpful, particularly because there are so many new companies that

are coming along; where the large companies, they've got their programs in order, but the small companies need some guidance.

PARTICIPANT [In Audience]: [Inaudible] from NTI Research.

I'm a veterinary pathologist.

And going back on the same topic of going back to the ICH guidelines, I would like to hear some rationale for actually even measuring antibodies on the mother and the pups or in the milk. As a pathologist, if you're concerned with the adverse effects of antibodies or toxicity, and not efficacy, but if you're concerned with toxicity of antibodies you would look for effects in the fetus by histopathology or post-weaning. So you do multiple time points. Because just measuring antibodies won't tell you anything.

And I'm seeing myself writing a report of antibody levels and going, "Okay, there's antibodies in the serum of the dam, there's antibodies in the serum of the fetus--" Or, "There's no antibodies in the serum of the fetus." What do you do with that data?

You know, I understand Dr. Verdier's point of, okay, you're proving that you're inducing antibodies and the antibodies are actually passing to the fetus. But it's almost like a given. I know you don't assume anything, but you get a rabbit, that is expected that 100 percent of antibodies in the serum of them will pass to the fetus. I still don't see what you do with that data.

Okay, let's say you look at--And then there's antibodies positioned in the tissue of the fetus. If there's no damage, what do you do with that data? So I think I keep going back, and I don't see a reason, unless anybody can give me a better rationale for that.

DR. BARROW: Just to make sure I've understood, if you don't advocate looking at antibody titres, what other measure of exposure would you use?

PARTICIPANT [In Audience]: Well, you have all the data. You have your efficacy data showing that you can induce antibodies in adult animals, right? And so I'm basically just assuming that if you have a 100-percent transfer of antibodies, it's a passive transfer; it's not an active process.

DR. BARROW: It is an active transfer. It will depend on your vaccine in question.

PARTICIPANT [In Audience]: Okay. So I guess you could use that to prove, but I still don't see in the end what you do with the data. Like, okay, we proved that it did transfer. And what if it doesn't transfer? Then you have to reimmunize to make sure that you have antibodies in the fetus?

DR. BARROW: If we suspect there will be exposure in the human, yes.

PARTICIPANT [In Audience]: Okay. Thanks.

PARTICIPANT [In Audience]: Are we worried about the exposure to the antibody, or the intended immunologic consequence of the immunization? Or are we trying to assess the toxicity associated with activation of the immune system and what effect it will have on the conceptus, on the dam carrying the fetus to term, those kinds of questions? Those are two different things.

We're talking about inadvertent immunization of a pregnant woman at some point in pregnancy. I don't know whether you

should be doing the immunization during gestation. The issue is--

DR. BARROW: No, that is a--I'm sorry, can I just interrupt?

PARTICIPANT [In Audience]: Yes.

DR. BARROW: That's a consequence of the different gestation lengths between human and animal. We have to vaccinate--

PARTICIPANT [In Audience]: But the question is the effect of, let's say, the cytokine milieu after immunization. That should be done during gestation. And the primary cytokine milieu from a primary challenge may be different than a secondary challenge.

So I understand. Measuring IgG, and that tells you that that species can make an antibody response. And if you're worried about whether that antibody is going to cross and cross-react with some fetal tissue, that's a question, and certainly that makes sense.

But if you're worried about inadvertent administration to a pregnant woman, that's a different question. Then we can go down the path of saying, oh, it could be different on

any given day of gestation. And then none of these models really address that question. So I'm still back at: What is the question?

DR. CHRISTIAN: I think Paul will probably back this up.

The idea of getting to the maximum insult, the maximum exposure, and to have that over the extended period of gestation, at least from implantation to, let's say, the end of the fetal period, that's to address inadvertent exposure, by having that maximum response over all of those different days.

The only other way to do it is to do it on each of those days, which is the approach sometimes taken when you have two or three days, and then you do it another time during gestation, and two or three days. The other question, though, is if it's intended exposure. And that's a different case.

PARTICIPANT [In Audience]: Well, intended exposure if it's during--You know, again, the primary should be given during? You may do another arm where--

PARTICIPANT [In Audience]: I think the GSK person mentioned doing where they immunize prior to, and then have another group where they do it on day six only. That seemed like a reasonable model approach to me, also. But inadvertent administration—Again, are we worried about the intended consequence, the high-antibody titre and its effects on the fetus? Are we worried about the bystander

effect of the adjuvant and the hyper-immune response that we're trying to induce to get that antibody response?

DR. VERDIER: I think we worry about both. My first feeling is that the first risk is an interaction with an immunostimulation which would trigger something abnormal in the pregnancy status. That's my first fear.

But in some cases, perhaps very rare cases, antibodies can perhaps have a harmful effect, as is the case--question mark--with perhaps meninges-B polysaccharide vaccine, even if we have never been able to show any relation with these antibodies.

DR. VAN DER LAAN: May I add a question in this respect?

Do we need really the measurement of the antibody in the fetus? If we know, based on the data that Paul has shown

and data known from literature, that certain types of IgG will cross the placenta, the industry has to prove that every time again, if there is no further consequence to be expected?

DR. BARROW: I think we need that data to justify our choice of species. As you saw with the data I presented, with different vaccines we did find different levels of maternal antibody transfer. So we used that data to justify our choice of species for the main study.

PARTICIPANT [In Audience]: I have actually a very provocative question. When I think about the inadvertent administration and the reality that the animal studies—Basically, animals lie, and you can't really rely on a lot of the data that you get from animals.

So the provocative question is: Is the information that you're going to get from the animals more relevant or more useful than the information you would get from the pregnancy registries? And maybe the pregnancy registries should be something that is pushed more. Very provocative question.

DR. VAN DER LAAN: Very provocative. Who wants to give a first response?

DR. GRUBER: I would like to give a response. I don't think that this question is provocative at all. I really think that we need both assessments. I really don't think that we can do away with developmental toxicity studies and wait until we have exposed pregnant women to get pregnancy registry data. I think we have to attempt to address the potential for any adverse effects of the vaccine induced in a potential pregnancy situation with all methods that are available to us. And in my opinion, that includes preclinical studies.

DR. VAN DER LAAN: I will add to that that, indeed, in this way, as a company, you are requesting for every physician treating pregnant women to do an NS1 study, without any control. So that's the real background.

We have to be aware of the fact that we are not developing guidelines for the old products that are reasonably well characterized thus far. But we are developing or writing guidelines for products which in many cases are recombinant vaccines or genetically changed, and that type of stuff.

So you first have to characterize that type of risk. And it's not very ethical to do that directly into humans.

MR. THOMAS [In Audience]: Larry Thomas, Avant

Immunotherapeutics.

A lot of the discussion has centered on the assumption of a per enteral vaccine. I was just curious about the feeling of the panel on if there would be any expectation of different end points or design for a mucosal vaccine?

Assuming of course that there is a case-by-case assessment.

DR. VAN DER LAAN: Who will take this question?

DR. GRUBER: I don't have an answer. I can just tell you that we're going to be discussing this question, if we should really be requiring developmental toxicity studies for vaccines that are mucosally administered. We'll be discussing that, but we haven't really been arriving at a conclusion.

I guess the point, again, is made, you may have a mucosal exposure, but you may also then get systemic exposure. And again, you will have a systemic immune response induced.

And so I think you can make a case for requesting a developmental toxicity study.

But I think that goes a little bit into the area that I don't think that we can really discuss here. But I think there is one question that the agency also has to discuss. And it is really taking another look to say, "Do we really need it for every product? Or could there be cases where there are exceptions to the rules?" And I think we need to discuss it. But at this point, I don't think there is any regulatory stance that I could give you.

MS. HOLMAN [In Audience]: Lisa Holman [ph], from GlaxoSmithKline.

Yesterday I asked a question about multiplasmid vaccines.

And I was told that for toxicity testing we would need to consider those individually. Well, for repro-tox, when we look at recombinant vaccines and live viral vaccines, what we're looking at is the mixture of epitopes, maybe T cell epitopes. And we mount a polyclonal humoral response.

If our developmental studies focus more on the immune response for multi-component DNA vaccines where we are going to mount a cell-mediated immune response to a variety of different T cell epitopes and the polyclonal response, isn't it more relevant to look at it as a whole product

when we are looking at antigenic competition; and take

Francois' tiered approach, that if we do see something with

the combination product, that we then go back and look at

it mechanistically in a single plasmid situation? Could

the panel comment on that?

DR. VAN DER LAAN: Who is taking this question? Francois?

DR. VERDIER: For me, it's quite obvious that we are testing the final vaccine with the adjuvant with a different component of the vaccine. And then, if we find something, we can go further. That's all I can say.

DR. GRUBER: Yes. I would have to think about this a little further. And I don't know if--I probably don't have a good answer here right now. But in a way, I mean, why are the issues so different at that point? Maybe I just don't understand your question right. But, yes, I don't know.

DR. VAN DER LAAN: Can you give why your problem is different from what we have handled thus far?

MS. HOLMAN [In Audience]: Well, I tend to think that there is a case for actually testing the whole vaccine in a reprostudy. But I guess I'm answering my own question in that,

if I were to ask the question of were we going to have to do repro-tox on separate plasmids.

The question yesterday was we're going to have to do repeat-dose toxicity on separate plasmids, even though they're going to only be administered, ever, in a single product. So with the answer to that question yesterday, I'm guessing that the response will be that they will want individual plasmid repro-tox data. And I don't think it's relevant to generate that. So I'm asking you to consider whether, as a repro-tox panel, you think it's appropriate to test them separately, or as a combination product.

DR. VAN DER LAAN: Is that a different answer? I would suggest that we should know more from this product, to give a more precise answer. Apparently, you have some of your concept in your mind that's not easy to explain in this way.

DR. GRUBER: That's perhaps true. And please, do not take this as a regulatory position, but if you are required—and we heard this yesterday—to do separate preclinical studies to evaluate the safety of the plasmid [inaudible] and then the plasmid containing the antigen or genes for the antigen

of interest, you have already then that battery of preclinical data. And so then it would be conceivable to me that you can go into the reproductive toxicity study with your full product, because you have the other preclinical data. Okay? But you know, this is a very novel question. And we will take this into consideration. MS. HOLMAN [In Audience]: Thank you.

DR. VAN DER LAAN: There were two questions there. Yes. PARTICIPANT [In Audience]: Yes. Regarding the registry, I think that can be done as part of the clinical development. So as we do at Merck during the development, we collect data in pregnancy, and that can be used at the end before licensure to provide and list the initial database on that. The second comment is regarding your question of whether or not we should measure antibodies in the fetus. And I'm not convinced of the relevance of any animal model that we're going to use. And so I don't really know how we're going to extrapolate the data you're going to get in any animal model to what's going to happen to people. And so, I'm not sure this is going to help you at all.

DR. GRUBER: Can I give this a shot?

DR. VAN DER LAAN: Yes.

DR. GRUBER: I think when we wrote the guidance and we said you should evaluate, or you should look for antibodies in the fetus, I think where this was coming from is from vaccines indicated for maternal immunization where you really want an antibody transfer to the baby to protect it from neonatal disease.

And I think the ability to also demonstrate antibody transfer then in an animal model from the dam to the fetus was really like a proof of concept issue, to say that you can demonstrate that you are able to show this; you know, keeping in mind, of course, the limitation of an animal model.

But Carlo, don't you face the same problem if you develop a vaccine candidate, some preventive vaccine that you give to a non-pregnant population, and you do your proof of concept study in an animal model to see that your candidate is immunogenic and has the desired effect? And I think that's sort of why we wrote it that way.

PARTICIPANT [In Audience]: Right. I do understand the question if it is an efficacy question. I don't understand

the question if it is a safety question. So I understand why you put it, because you want to make sure the intent is to have an antibody in the serum of the fetus. So it makes perfect sense in that case to go and test it, because that's in the intent.

But if you're just fishing for toxicity, it doesn't make any sense to me to go and look in the fetus, because I'm not sure the data are relevant. But I understand your point.

DR. VAN DER LAAN: Yes, I can agree. I have the same feeling in asking for the toxicological elements of this. First, is this so, what Dr. Barrow said, the exposure? And exposure can be different from different vaccines. And the second point is then what Marion now indicated, that the exposure might have also effects that you want, intended effects in the neonate.

Other question?

MS. SAEGER [In Audience]: Polly Saeger, from NIAID/NIH.

Maybe I've missed something here today. And it's entirely possible I did. But I'm thinking about, you know, we're in the government; we're helping various sponsors develop

vaccines. And I'm right now responsible for setting up some of the resources to help with development of biodefense vaccines.

So I'm thinking, we're setting up these assays that would be required before we would go into phase III trials and whatever. In my experience, before when we were setting up assays, we've gone through a phase of trying to validate our assay, or at least make sure it's standardized. And part of that includes looking at negative controls and positive controls.

And what I haven't heard here, I don't think, is what I could use with working with my investigators and contractors in setting up these assays as a positive control that would be appropriate for testing vaccines. I mean, did I miss something, or is there a vaccine or a vaccination schedule that can be used as a positive control in this kind of repro-tox assay?

DR. VAN DER LAAN: Your question is a double question.

Referring to the use of a positive control and for the positive control standard, for that positive control I

think every vaccine has its own schedule. But for that vaccine you have a standard--

MS. SAEGER [In Audience]: No, no. No, I'm not talking about--When you're setting up an assay, okay? So if someone has not been doing this before, necessarily, or I'm hiring a contractor to do repro-tox testing on an anthrax vaccine, okay? If it were a drug, I would ask them to show me data that they have been able to show a positive effect from some standard, known drug that causes the developmental toxic effect in this assay, so that I know their assay works. Because you have to be able to show an effect in a study.

Ken, do you know what I'm talking about? So for the vaccine studies, what would you recommend as a positive control to be used in the assay?

DR. HASTINGS: Well, in a standard repro-tox study for drugs, you don't use a positive control.

MS. SAEGER [In Audience]: You don't. But before I would hire someone to do that, I would want them to show me data that in their hands they can get a positive result.

Correct?

DR. HASTINGS: Right.

MS. SAEGER [In Audience]: So if you received data from someone you'd never looked at data from before, you would want to see that. So I mean, if you want to set this up and do it, what can we use? Other than rubella, are there any others?

DR. VAN DER LAAN: As far as I know, your question is a validation of the model.

MS. SAEGER [In Audience]: Exactly.

DR. VAN DER LAAN: And I think there are more people in the audience that are asking for that. I think that in all the discussions that we've had on the relevance of the animal models, that that's a very difficult issue. If you have to sponsor some researchers, I think then you have to keep in mind that such a particular safety study should be done under GLP. And so you should go to a company that is able to do a GLP and has control data and so on, and is doing the right job. That's my interpretation.

MS. SAEGER [In Audience]: I understand all of that.

DR. VAN DER LAAN: Yes.

MS. SAEGER [In Audience]: The question is, other than rubella, is there any evidence that any other vaccine tested in this kind of system has caused a positive effect in the kinds of developmental tox studies we have seen here?

I believe Dr. Christian showed one that you said was related to the adjuvant.

DR. CHRISTIAN: Yes.

MS. SAEGER [In Audience]: And what I'm asking is, of all the other studies that people know about that have been done, can anyone give me--I don't want the details, but tell me, have there been ones that are positive, weakly positive, strongly positive?

DR. CHRISTIAN: Not that we've done. And we've probably done the most, so I guess you can't even use us. But I would say that what you want to look for, if we're going to restrict it to the usual developmental tox end points, you want to know that the lab historically has experience conducting that; that they've worked with the species and can observe those end points in that species which is

responsive to your vaccine; and that they may have other compounds that show similar things.

I was just thinking, for example, if we're looking for immune response, you might even look at something like, do you have evidence of uncoupling agents, for example, which cause fevers in animals. I could show you that and say, "Well, this is one potential thing that could happen as the result of the vaccine, and here is an effect of having a fever."

But it would be very difficult, since we don't have a vaccine, a therapeutic vaccine, that in my experience—and I don't know, maybe Paul has one, or one of the companies has one—that has had an adverse effect. It would be awfully difficult to do that as a positive control. To the best of my knowledge, there isn't one.

And the same applies to drugs, though. Because having a positive control drug merely identifies that you can identify some end points that change. It doesn't necessarily mean anything at all relevant to the new drug entity.

MS. SAEGER [In Audience]: Precisely.

DR. VERDIER: Just to answer indirectly to your question, I think we have some data regarding administration of cytokines in animals.

So Paul, I don't know if you want to comment. But it's not directly a vaccine, but you can imagine that your live virus will trigger a cytokine release. And we know that cytokines in mice, and also in humans, can trigger abortion. So it's indirect proof.

MS. SAEGER [In Audience]: Okay. But what I'd like to suggest, then, is that maybe FDA in their guidance set this up to take a look again at this after some period of time, that if we're doing--everybody, all the sponsors, are doing these repro-tox studies--that after a period of three to five years, or "X"-number of vaccines in specific categories have been looked at, that the FDA reevaluate whether or not to continue to require the studies.

Because I could see that for some categories of vaccines it

could be a real issue. For other categories of vaccines you may find that there is no evidence after "X"-number of vaccines through that you've ever seen anything; in which case I would think you might want to reconsider it as an

absolute requirement, and do it only as a case-by-case basis.

DR. GRUBER: Yes. But now you raise two entirely different points. But I think we all agree with your last statement made, that with experience comes wisdom, and at that point we can reevaluate our approaches. And I think FDA has been doing this all along. But your point is well taken.

DR. BARROW: I'd just like to add one point. Why are you considering vaccines to be different to any other therapeutic class? Would you, for instance, say when you want to place a study to test an antibiotic, would you say, "I want to see positive studies with another antibiotic" before going ahead?

MS. SAEGER [In Audience]: Personally, if I'm going to spend money on a study, I want to know that the person, the group, that's doing the study has positive results. I think we know for many of the drug classes, if not all of the drug classes, or a whole bunch of them. I mean, the reason you do repro-tox is because things have come up positive.

Now, whether or not that totally correlates with what you see in humans is a different story. But at least you know you have an assay that can give you a signal. And so far, in these vaccines, other than rubella--I mean, I guess it's going to take developing a database to see if this kind of study gives a signal.

MS. BENNETT [In Audience]: I actually want to make a comment about that lady's comment. Sorry, I'm Jillian Bennett, from Australia.

I was a little bit surprised. Because what we're doing in our conventional toxicology studies that we spoke about yesterday is, we're not actually trying to target a maximum lethal dose, or anything like that, because we've recognized that they're vaccines, and we're not trying to induce intentionally a toxic effect. So we put in a dose that we think gives us a margin of safety. And in terms of repro-tox, I actually took it from the same sort of perspective.

In terms of the guidance, I think that I actually have to say, in terms of mapping out our product development program, I found it really helpful to have something

additional to the ICH guidance. Because it gives us some perspective to think about with respect to vaccines. It probably would be helpful if we separated out those vaccines that were intended for women to be vaccinated during pregnancy, versus those who may be unintentionally vaccinated. And I think that would actually bring some clarity then to sponsors, in terms of their understanding of what's required.

I think the other thing is that, in terms of the category of the vaccine, probably vaccines that are recombinant, sub-unit vaccines, adjuvanted with something like alum, you know, people are probably—We have a long history of use of alum but, you know, there is some speculation about the safety of that. But they are antigens that are naturally expressed during infection.

And so I think the epidemiology and understanding of the disease and the sequelae of having the disease are also very useful in terms of what we may want to incorporate.

But again, I think that's probably defined quite well in the guideline.

I think from my own company's perspective, where we have a novel adjuvant and it is something that we don't have a lot of experience with, I think it would be immoral if we actually didn't make some sort of attempt to understand the developmental toxicity of that. And perhaps, if we do give a rabbit a 15-fold-high human dose, it might actually also be useful to give the equivalent human dose on a milligramper-kilogram basis, just to give us an understanding of what the background level is versus an extreme level. Because in our normal animal models where we set our dosing, we've probably given them--you know, almost tried to mimic what a human dose would be. Thank you.

DR. VAN DER LAAN: Okay. Thank you.

I think, the last question.

PARTICIPANT [In Audience]: Okay.

DR. VAN DER LAAN: It's five o'clock.

PARTICIPANT [In Audience]: Oh, okay, very quickly then.
We've been speaking a lot about IgG and trans-placental
transfer. And when we address, though, working with live
virus, that then becomes the concern about the transfer of
the virus, in fact, across the placenta. And there are

very rare reports of human neonates and IgM. And therefore, the conclusion being that the human neonate probably did see the virus as the result of immunization of the mother with a live virus.

Not being an immunologist, please deal with my technical question here. Would it be technically feasible to think, okay, allow the pregnancy of the dam to go forward and either the pups or the kits, whichever species you're using--Would it be feasible then to measure, given the differences in the immune response? This is my question, though. Could we have a surrogate marker, such as the rare report, as we see, of IgM in human neonate? Is that just not really possible?

DR. VAN DER LAAN: Are there technical persons in the audience who can answer this question?

[No Response.]

DR. VAN DER LAAN: On the panel? No. We have to think about it.

[Simultaneous Discussion.]

DR. VAN DER LAAN: We don't know.

MS. HOLME [In Audience]: Risa Holme [ph], from GlaxoSmithKline.

We have had a live viral vaccine where we've evaluated the ability of the virus to cross the placenta. And we evaluated the sort of standard repro development end points. And since we did PCR on a significant number of pups and we didn't see any developmental tox, we felt that it was adequate to stop there. So we have had experience of actually doing PCR in mice studies following a live viral vaccine.

DR. VAN DER LAAN: Okay. Thanks.

Thanks for the audience for this discussion in this last hour.

I quess, to Marion or Mercedes.

DR. SERABIAN: I'd like to thank everyone for coming and staying. I'm not sure, per se, consensus was reached today on certain items; but certainly, some stimulating conversation, and a lot of issues for us to take back and think about.

Do you want to add anything?

DR. GRUBER: I thank everybody for coming to this workshop and participating in the discussion. That was very helpful. And thank you very much again. 'Bye. [Whereupon, the workshop was adjourned.]

- - -